1
|
Wang X, Zhao Z, Zhang M, Liang Y, Liu Y. Polyurethanes Modified by Ionic Liquids and Their Applications. Int J Mol Sci 2023; 24:11627. [PMID: 37511385 PMCID: PMC10380480 DOI: 10.3390/ijms241411627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Polyurethane (PU) refers to the polymer containing carbamate groups in its molecular structure, generally obtained by the reaction of isocyanate and alcohol. Because of its flexible formulation, diverse product forms, and excellent performance, it has been widely used in mechanical engineering, electronic equipment, biomedical applications, etc. Through physical or chemical methods, ionic groups are introduced into PU, which gives PU electrical conductivity, flame-retardant, and antistatic properties, thus expanding the application fields of PU, especially in flexible devices such as sensors, actuators, and functional membranes for batteries and gas absorption. In this review, we firstly introduced the characteristics of PU in chemical and microphase structures and their related physical and chemical performance. To improve the performance of PU, ionic liquids (ILs) were applied in the processing or synthesis of PU, resulting in a new type of PU called ionic PU. In the following part of this review, we mainly summarized the fabrication methods of IL-modified PUs via physical blending and the chemical copolymerization method. Then, we summarized the research progress of the applications for IL-modified PUs in different fields, including sensors, actuators, transistors, antistatic films, etc. Finally, we discussed the future development trends and challenges faced by IL-modified PUs.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhenjie Zhao
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Meiyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yongri Liang
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yingdan Liu
- State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
2
|
Zhao R, Wu H, Dong X, Xu M, Wang Z, Wang X. Enhancing the Toughness of Free-Standing Polyimide Films for Advanced Electronics Applications: A Study on the Impact of Film-Forming Processes. Polymers (Basel) 2023; 15:2073. [PMID: 37177218 PMCID: PMC10180538 DOI: 10.3390/polym15092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
High-quality and free-standing polyimide (PI) film with desirable mechanical properties and uniformity is in high demand due to its widespread applications in highly precise flexible and chip-integrated sensors. In this study, a free-standing PI film with high toughness was successfully prepared using a diamine monomer with ether linkages. The prepared PI films exhibited significantly superior mechanical properties compared to PI films of the same molecular structure, which can be attributed to the systematic exploration of the film-forming process. The exploration of the film-forming process includes the curing procedures, film-forming substrates, and annealing treatments. Additionally, the thickness uniformity and surface homogeneity of free-standing films were crucial for toughness. Increasing the crystallinity of the PI films by eliminating residual stress also contributed to their high strength. The results demonstrate that by adjusting the above-mentioned factors, the prepared PI films possess excellent mechanical properties, with tensile strength and elongation at break of 194.71 MPa and 130.13%, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
3
|
Xie Y, Lv X, Li Y, Lv A, Sui X, Tian S, Jiang L, Li R, Sun S. Carbon Nanotubes and Silica@polyaniline Core-Shell Particles Synergistically Enhance the Toughness and Electrical Conductivity in Hydrophobic Associated Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1299-1308. [PMID: 36630713 DOI: 10.1021/acs.langmuir.2c03128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft, conductive, and stretchable sensors are highly desirable in many applications, including artificial skin, biomonitoring patches, and so on. Recently, a combination of good electrical and mechanical properties was regarded as the most important evaluation criterion for judging whether hydrogel sensors are suitable for practical applications. Herein, we demonstrate a novel carboxylated carbon nanotube (MWCNT-COOH)-embedded P(AM/LMA)/SiO2@PANI hydrogel. The hydrogel benefits from a double-network structure (hydrogen bond cross-linking and hydrophobic connectivity network) due to the role of MWCNT-COOH and SiO2@PANI as cross-linkers, thus resulting in tough composite hydrogels. The obtained P(AM/LMA)/SiO2@PANI/MWCNT-COOH hydrogels exhibited high tensile strength (1939 kPa), super stretchability (3948.37%), and excellent strain sensitivity (gauge factor = 11.566 at 100-1100% strain). Obviously, MWCNT-COOH not only improved the electrical conductivity but also enhanced the mechanical properties of the hydrogel. Therefore, the integration of MWCNT-COOH and SiO2@PANI-based hydrogel strain sensors will display broad application in sophisticated intelligence, soft robotics, bionic prosthetics, personal health care, and other fields using inexpensive, green, and easily available biomass.
Collapse
Affiliation(s)
- Yuhui Xie
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Xue Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Youqiang Li
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Aowei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Xinyi Sui
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Song Tian
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Li'an Jiang
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Ruifeng Li
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun130012, China
| |
Collapse
|