1
|
Li Y, Pu ZW, Yang ZZ, Wang YD, Shen YT, Wu JB, Long L, Zhou YN, Yan WC. Design and synthesis of fluorinated polyimides with low thermal expansion and enhanced dielectric properties. J Colloid Interface Sci 2025; 685:938-947. [PMID: 39874830 DOI: 10.1016/j.jcis.2025.01.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Modern microelectronics industries urgently require dielectric materials with low thermal expansion coefficients, low dielectric constants, and minimal dielectric loss. However, the design principles of materials with low dielectric constants and low thermal expansion are contradictory. In this study, a new diamine monomer containing a dibenzocyclooctadiene unit (DBCOD-NH2) was designed and synthesized, which was subsequently polymerized with high fluorine content 4,4'-hexafluoroisopr-opylidene diphthalic anhydride and 4,4'-diamino-2,2'-bis(trifleoromethyl)biphenyl to obtain a series of fluorinated polyimides (PIs). Due to the unique conformational transition of the eight-membered carbon ring, the resulting PI can reach a low averaging thermal expansion coefficient (CTE) of only 12.27 ppm/K over 5-150 ℃ with a size change rate of only 0.16 %. Surprisingly, the synergistic effect of DBCOD-NH2 with the other two monomers enhances the dielectric performance of the PIs. At an electric field frequency of 10 MHz, the dielectric constant (Dk) and the dielectric loss (Df) can be reduced to as low as 2.61 and 0.00194, respectively. The strategy used herein largely tackles the challenge of balancing low Dk with low CTE. Furthermore, these PI films also exhibit good thermal stability (with 5 wt% weight loss temperatures ranging from 453 to 537 ℃ in N2, and glass transition temperatures of 305-337 ℃) and robust mechanical properties (with a tensile modulus of 1.88-2.29 GPa and an elongation at break of 6.36-8.11 %). The combination of low thermal expansion and excellent dielectric properties renders these PIs highly promising for applications in the microelectronics and telecommunications industries.
Collapse
Affiliation(s)
- Yang Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhong-Wen Pu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Zhi-Zhou Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yi-Da Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Yu-Tang Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Jing-Bo Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Yin-Ning Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Wei-Cheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
2
|
Li L, Jiang W, Yang X, Meng Y, Hu P, Huang C, Liu F. From Molecular Design to Practical Applications: Strategies for Enhancing the Optical and Thermal Performance of Polyimide Films. Polymers (Basel) 2024; 16:2315. [PMID: 39204535 PMCID: PMC11359642 DOI: 10.3390/polym16162315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Polyimide (PI) films are well recognized for their outstanding chemical resistance, radiation resistance, thermal properties, and mechanical strength, rendering them highly valuable in advanced fields such as aerospace, sophisticated electronic components, and semiconductors. However, improving their optical transparency while maintaining excellent thermal properties remains a significant challenge. This review systematically checks over recent advancements in enhancing the optical and thermal performance of PI films, focusing on various strategies through molecular design. These strategies include optimizing the main chain, side chain, non-coplanar structures, and endcap groups. Rigid and flexible structural characteristics in the proper combination can contribute to the balance thermal stability and optical transparency. Introducing fluorinated substituents and bulky side groups significantly reduces the formation of charge transfer complexes, enhancing both transparency and thermal properties. Non-coplanar structures, such as spiro and cardo configurations, further improve the optical properties while maintaining thermal stability. Future research trends include nanoparticle doping, intrinsic microporous PI polymers, photosensitive polyimides, machine learning-assisted molecular design, and metal coating techniques, which are expected to further enhance the comprehensive optical and thermal performance of PI films and expand their applications in flexible displays, solar cells, and high-performance electronic devices. Overall, systematic molecular design and optimization have significantly improved the optical and thermal performance of PI films, showing broad application prospects. This review aims to provide researchers with valuable references, stimulate more innovative research and applications, and promote the deep integration of PI films into modern technology and industry.
Collapse
Affiliation(s)
- Liangrong Li
- Fuzhou Medical School, Nanchang University, Fuzhou 344000, China; (L.L.); (W.J.); (X.Y.)
| | - Wendan Jiang
- Fuzhou Medical School, Nanchang University, Fuzhou 344000, China; (L.L.); (W.J.); (X.Y.)
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiaozhe Yang
- Fuzhou Medical School, Nanchang University, Fuzhou 344000, China; (L.L.); (W.J.); (X.Y.)
| | - Yundong Meng
- Jiangxi Shengyi Technology Co., Ltd., Jiujiang 332005, China; (Y.M.); (P.H.); (C.H.)
| | - Peng Hu
- Jiangxi Shengyi Technology Co., Ltd., Jiujiang 332005, China; (Y.M.); (P.H.); (C.H.)
| | - Cheng Huang
- Jiangxi Shengyi Technology Co., Ltd., Jiujiang 332005, China; (Y.M.); (P.H.); (C.H.)
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Jiangxi Shengyi Technology Co., Ltd., Jiujiang 332005, China; (Y.M.); (P.H.); (C.H.)
| |
Collapse
|
3
|
Lian M, Zheng F, Meng L, Zhao F, Liu J, Song J, Lu Q. Comparison of Homo-Polyimide Films Derived from Two Isomeric Bis-Benzimidazole Diamines. Molecules 2023; 28:4889. [PMID: 37446551 PMCID: PMC10343788 DOI: 10.3390/molecules28134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Heteroaromatic polyimides (PIs) containing benzimidazole have attracted tremendous attention due to their positive impact on the properties of PIs. Some research on PIs containing 4,4'-[5,5'-bi-1H-benzimidazole]-2,2'-diylbis-benzenamine (4-AB) has been reported. However, reports are lacking on homo-polyimides (homo-PIs) containing 3,3'-[5,5'-bi-1H-benzimidazole]-2,2'-diylbis-benzenamine (3-AB), which is one of the isomers of 4-AB. In this paper, the influence of amino groups' positions on the performance of homo-PIs was investigated. It was found that the net charge of the amine N group in 4-AB was lower than that of 3-AB, resulting in higher reactivity of 4-AB. Consequently, PIs containing 4-AB displayed better mechanical performance. Molecular simulation confirmed that 3-AB and its corresponding PI chain exhibited distorted conformation, leading to the PI films containing 3-AB having a lighter color. In addition, the 3-AB structure was calculated to have higher rotational energy compared to 4-AB, resulting in a higher glass transition temperature (Tg) in PIs prepared from 3-AB. On the other hand, PIs containing 4-AB exhibited a higher level of molecular linearity, leading to a lower coefficient of thermal expansion (CTE) compared to PIs prepared from 3-AB. Furthermore, all PIs showed higher thermal stability with a 5% weight loss temperature above 530 °C and Tg higher than 400 °C.
Collapse
Affiliation(s)
- Meng Lian
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology, Weifang 262700, China; (M.L.); (L.M.); (F.Z.); (J.L.); (J.S.)
| | - Feng Zheng
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Lingbin Meng
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology, Weifang 262700, China; (M.L.); (L.M.); (F.Z.); (J.L.); (J.S.)
| | - Fei Zhao
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology, Weifang 262700, China; (M.L.); (L.M.); (F.Z.); (J.L.); (J.S.)
| | - Jun Liu
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology, Weifang 262700, China; (M.L.); (L.M.); (F.Z.); (J.L.); (J.S.)
| | - Jimei Song
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology, Weifang 262700, China; (M.L.); (L.M.); (F.Z.); (J.L.); (J.S.)
| | - Qinghua Lu
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Bao F, Lei H, Zou B, Peng W, Qiu L, Ye F, Song Y, Qi F, Qiu X, Huang M. Colorless polyimides derived from rigid trifluoromethyl-substituted triphenylenediamines. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Achieving both low thermal expansion and low birefringence for polyimides by regulating chain structures. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Xia X, He X, Zhang S, Zheng F, Lu Q. Short-Side-Chain Regulation of Colorless and Transparent Polyamide-Imides for Flexible Transparent Displays. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
7
|
Chen G, Xu G, Jiao Y, Tang Y, Tan L, Fang X. Cardo polyimides with high Tg and transparency derived from bisphenol fluorenes and 1,4-bis(4-fluorophthalimide)cyclohexanes via aromatic nucleophilic substitution. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
8
|
Feng J, Wang Y, Qin X, Lv Y, Huang Y, Yang Q, Li G, Kong M. Revealing Molecular Mechanisms of Colorless Transparent Polyimide Films under Photo-Oxidation. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
9
|
Xu Y, Zhang M, Pang Y, Zheng T, Zhang L, Wang Z, Yan J. Colorless Polyimides from 2,2',3,3'-Biphenyltetracarboxylic Dianhydride and Fluorinated Diamines. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Li D, Wang C, Yan X, Ma S, Lu R, Qian G, Zhou H. Heat-resistant colorless polyimides from benzimidazole diamines: Synthesis and properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Effect of simultaneously introduced bulky pendent group and amide unit on optical transparency and dimensional stability of polyimide film. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Liu X, Zhou J, Zhou Y, Wu M, Zhu Y, Zhao J, Liu S, Xiao H. Chemically crosslinked polyimide-POSS hybrid: A dielectric material with improved dimensional stability and dielectric properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|