1
|
López-Ortiz M, Bolzonello L, Bruschi M, Fresch E, Collini E, Hu C, Croce R, van Hulst NF, Gorostiza P. Photoelectrochemical Two-Dimensional Electronic Spectroscopy (PEC2DES) of Photosystem I: Charge Separation Dynamics Hidden in a Multichromophoric Landscape. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43451-43461. [PMID: 39121384 PMCID: PMC11345722 DOI: 10.1021/acsami.4c03652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
We present a nonlinear spectroelectrochemical technique to investigate photosynthetic protein complexes. The PEC2DES setup combines photoelectrochemical detection (PEC) that selectively probes the protein photogenerated charges output with two-dimensional electronic spectroscopy (2DES) excitation that spreads the nonlinear optical response of the system in an excitation-detection map. PEC allows us to distinguish the contribution of charge separation (CS) from other de-excitation pathways, whereas 2DES allows us to disentangle congested spectral bands and evaluate the exciton dynamics (decays and coherences) of the photosystem complex. We have developed in operando phase-modulated 2DES by measuring the photoelectrochemical reaction rate in a biohybrid electrode functionalized with a plant photosystem complex I-light harvesting complex I (PSI-LHCI) layer. Optimizing the photoelectrochemical current signal yields reliable linear spectra unequivocally associated with PSI-LHCI. The 2DES signal is validated by nonlinear features like the characteristic vibrational coherence at 750 cm-1. However, no energy transfer dynamics is observed within the 450 fs experimental window. These intriguing results are discussed in the context of incoherent mixing resulting in reduced nonlinear contrast for multichromophoric complexes, such as the 160 chlorophyll PSI. The presented PEC2DES method identifies generated charges unlike purely optical 2DES and opens the way to probe the CS channel in multichromophoric complexes.
Collapse
Affiliation(s)
- Manuel López-Ortiz
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, Barcelona 08028, Spain
| | - Luca Bolzonello
- ICFO
- Institut de Ciències Fotòniques, The Barcelona Institute
of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Matteo Bruschi
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Padova 35131, Italy
| | - Elisa Fresch
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Padova 35131, Italy
| | - Elisabetta Collini
- Dipartimento
di Scienze Chimiche, Università degli
Studi di Padova, Padova 35131, Italy
| | - Chen Hu
- Biophysics
of Photosynthesis, Department of Physics and Astronomy, Faculty of
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam, HV 1081, The Netherlands
| | - Roberta Croce
- Biophysics
of Photosynthesis, Department of Physics and Astronomy, Faculty of
Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, Amsterdam, HV 1081, The Netherlands
| | - Niek F. van Hulst
- ICFO
- Institut de Ciències Fotòniques, The Barcelona Institute
of Science and Technology, Castelldefels, Barcelona 08860, Spain
- ICREA
- Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Pau Gorostiza
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, Barcelona 08028, Spain
- ICREA
- Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
- CIBER-BBN, Barcelona 08028, Spain
| |
Collapse
|
2
|
Shen J, Kumar A, Wahiduzzaman M, Barpaga D, Maurin G, Motkuri RK. Engineered Nanoporous Frameworks for Adsorption Cooling Applications. Chem Rev 2024; 124:7619-7673. [PMID: 38683669 DOI: 10.1021/acs.chemrev.3c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The energy demand for traditional vapor-compressed technology for space cooling continues to soar year after year due to global warming and the increasing human population's need to improve living and working conditions. Thus, there is a growing demand for eco-friendly technologies that use sustainable or waste energy resources. This review discusses the properties of various refrigerants used for adsorption cooling applications followed by a brief discussion on the thermodynamic cycle. Next, sorbents traditionally used for cooling are reviewed to emphasize the need for advanced capture materials with superior properties to improve refrigerant sorption. The remainder of the review focus on studies using engineered nanoporous frameworks (ENFs) with various refrigerants for adsorption cooling applications. The effects of the various factors that play a role in ENF-refrigerant pair selection, including pore structure/dimension/shape, morphology, open-metal sites, pore chemistry and possible presence of defects, are reviewed. Next, in-depth insights into the sorbent-refrigerant interaction, and pore filling mechanism gained through a combination of characterization techniques and computational modeling are discussed. Finally, we outline the challenges and opportunities related to using ENFs for adsorption cooling applications and provide our views on the future of this technology.
Collapse
Affiliation(s)
- Jian Shen
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, P.R. China
| | - Abhishek Kumar
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | | - Dushyant Barpaga
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Guillaume Maurin
- ICGM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
3
|
Chen X, Feng P, Li X. High Reactivity of Dimethyl Ether Activated by Zeolite Ferrierite within a Fer Cage: A Prediction Study. Molecules 2024; 29:2000. [PMID: 38731490 PMCID: PMC11085771 DOI: 10.3390/molecules29092000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
The zeolite-catalyzed conversion of DME into chemicals is considered environmentally friendly in industry. The periodic density functional theory, statistical thermodynamics, and the transition state theory are used to study some possible parallel reactions about the hydrogen-bonded DME over zeolite ferrierite. The following are the key findings: (1) the charge separation probably leads to the conversion of a hydrogen-bonded DME into a dimethyl oxonium ion (i.e., DMO+ or (CH3)2OH+) with a positive charge of about 0.804 e; (2) the methylation of DME, CH3OH, H2O, and CO by DMO+ at the T2O6 site of zeolite ferrierite shows the different activated internal energy (∆E≠) ranging from 18.47 to 30.06 kcal/mol, implying the strong methylation ability of DMO+; (3) H-abstraction by DMO+ is about 3.94-15.53 or 6.57-18.16 kcal/mol higher than DMO+ methylation in the activation internal energy; (4) six DMO+-mediated reactions are more likely to occur due to the lower barriers, compared to the experimental barrier (i.e., 39.87 kcal/mol) for methyl acetate synthesis; (5) active intermediates, such as (CH3)3O+, (CH3)2OH+, CH3CO+, CH3OH2+, and CH2=OH+, are expected to appear; (6) DMO+ is slightly weaker than the well-known surface methoxy species (ZO-CH3) in methylation; and (7) the methylated activity declines in the order of DME, CH3OH, H2O, and CO, with corresponding rate constants at 463.15 K of about 3.4 × 104, 1.1 × 102, 0.18, and 8.2 × 10-2 s-1, respectively.
Collapse
Affiliation(s)
- Xiaofang Chen
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Pei Feng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Xiujie Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Chang Q, Yang D, Zhang X, Ou Z, Kim J, Liang T, Chen J, Cheng S, Cheng L, Ge B, Ang EH, Xiang H, Li M, Song X. Understanding ZIF particle chemical etching dynamics and morphology manipulation: in situ liquid phase electron microscopy and 3D electron tomography application. NANOSCALE 2023; 15:13718-13727. [PMID: 37577754 DOI: 10.1039/d3nr02357e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
In situ liquid phase transmission electron microscopy (TEM) and three-dimensional electron tomography are powerful tools for investigating the growth mechanism of MOFs and understanding the factors that influence their particle morphology. However, their combined application to the study of MOF etching dynamics is limited due to the challenges of the technique such as sample preparation, limited field of view, low electron density, and data analysis complexity. In this research, we present a study employing in situ liquid phase TEM to investigate the etching mechanism of colloidal zeolitic imidazolate framework (ZIF) nanoparticles. The etching process involves two distinct stages, resulting in the development of porous structures as well as partially and fully hollow morphologies. The etching process is induced by exposure to an acid solution, and both in situ and ex situ experiments demonstrate that the outer layer etches faster leading to overall volume shrinking (stage I) while the inner layer etches faster giving a hollow morphology (stage II), although both the outer layer and inner layer have been etched in the whole process. 3D electron tomography was used to quantify the properties of the hollow structures which show that the ZIF-67 crystal etching rate is larger than that of the ZIF-8 crystal at the same pH value. This study provides valuable insights into MOF particle morphology control and can lead to the development of novel MOF-based materials with tailored properties for various applications.
Collapse
Affiliation(s)
- Qiang Chang
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Dahai Yang
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Xingyu Zhang
- Department of Engineering & Mechanics, Beijing University of Technology, Beijing, 100124, China.
| | - Zihao Ou
- School of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Juyeong Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Tong Liang
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Junhao Chen
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Sheng Cheng
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Lixun Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Hongfa Xiang
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| | - Mufan Li
- Institute of Physical Chemistry, the College of Chemistry and Molecular Engineering, Pecking University, Beijing, 100871, China
| | - Xiaohui Song
- School of Materials Science and Engineering, Hefei University of Technology, Anhui Province, 230009, China.
| |
Collapse
|
5
|
Auvray T, Friščić T. Shaking Things from the Ground-Up: A Systematic Overview of the Mechanochemistry of Hard and High-Melting Inorganic Materials. Molecules 2023; 28:897. [PMID: 36677953 PMCID: PMC9865874 DOI: 10.3390/molecules28020897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
We provide a systematic overview of the mechanochemical reactions of inorganic solids, notably simple binary compounds, such as oxides, nitrides, carbides, sulphides, phosphides, hydrides, borides, borane derivatives, and related systems. Whereas the solid state has been traditionally considered to be of little synthetic value by the broader community of synthetic chemists, the solid-state community, and in particular researchers focusing on the reactions of inorganic materials, have thrived in building a rich and dynamic research field based on mechanically-driven transformations of inorganic substances typically seen as inert and high-melting. This review provides an insight into the chemical richness of such mechanochemical reactions and, at the same time, offers their tentative categorisation based on transformation type, resulting in seven distinct groupings: (i) the formation of adducts, (ii) the reactions of dehydration; (iii) oxidation-reduction (redox) reactions; (iv) metathesis (or exchange) reactions; (v) doping and structural rearrangements, including reactions involving the reaction vessel (the milling jar); (vi) acid-base reactions, and (vii) other, mixed type reactions. At the same time, we offer a parallel description of inorganic mechanochemical reactions depending on the reaction conditions, as those that: (i) take place under mild conditions (e.g., manual grinding using a mortar and a pestle); (ii) proceed gradually under mechanical milling; (iii) are self-sustained and initiated by mechanical milling, i.e., mechanically induced self-propagating reactions (MSRs); and (iv) proceed only via harsh grinding and are a result of chemical reactivity under strongly non-equilibrium conditions. By elaborating on typical examples and general principles in the mechanochemistry of hard and high-melting substances, this review provides a suitable complement to the existing literature, focusing on the properties and mechanochemical reactions of inorganic solids, such as nanomaterials and catalysts.
Collapse
Affiliation(s)
| | - Tomislav Friščić
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Yan B, Feng L, Zheng J, Zhang Q, Jiang S, Zhang C, Ding Y, Han J, Chen W, He S. High performance supercapacitors based on wood-derived thick carbon electrodes synthesized via green activation process. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01914k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A green, versatile, and universal H2O2 activation method is proposed to improve the capacitive properties of high-mass loading wood-based supercapacitors.
Collapse
Affiliation(s)
- Bing Yan
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Li Feng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiaojiao Zheng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Qian Zhang
- College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yichun Ding
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350010, China
| | - Jingquan Han
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, PR China
- University of Science and Technology of China, Hefei 230026, PR China
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|