1
|
Molavi H, Salimi MS. Investigation the effect of exchange solvents on the adsorption performances of Ce-MOFs towards organic dyes. Sci Rep 2025; 15:7074. [PMID: 40016413 PMCID: PMC11868615 DOI: 10.1038/s41598-025-90313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Cerium-based MOFs (Ce-MOFs) are regarded as attractive porous materials showing various structures, excellent thermal and chemical stability, tunable porous properties, and simple synthetic methods that are useful for wastewater treatment applications. Hence, in the present work, we synthesized a series of Ce-MOFs through a fast and green synthetic method at room temperature using water as a green solvent. Four different solvents including ethanol, chloroform, acetone, and methanol were used in the solvent-exchange process to engineer the properties of prepared Ce-MOFs. The influence of different exchange solvents on the crystalline structure, porous structure, thermal stability, and surface morphology of Ce-MOFs was studied systematically. It was found that exchange solvents can significantly affect the chemical and physical properties of prepared Ce-MOFs. Using ethanol as an exchange solvent results in the production of highly crystalline MOF that has the highest surface area (843 m2/g) and pore volume (0.7518 cm3/g) compared to other prepared Ce-MOFs. The dye adsorption experiments revealed that the activated sample by acetone (Ce-MOF-4) exhibited the highest adsorption capacities toward both anionic (270.27 mg/g for Congo Red (CR)) and cationic (227.27 mg/g for Malachite Green (MG)) dyes. This MOF adsorbs both organic dyes via different mechanisms including hydrogen bonding, pore-filling, π-π stacking, coordination, and electrostatic interactions. Moreover, it exhibited good structural stability in acidic solution, neutral solution, and during consecutive adsorption-desorption cycles, confirming its potential to be applied as a stable adsorbent for simultaneous removal of cationic and anionic organic dyes from water.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137- 66731, Iran.
| | - Mohammad Sepehr Salimi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137- 66731, Iran
| |
Collapse
|
2
|
Tong Y, Yang J, Xia F, Gu J. Construction of Compartmentalized Meso/Micro Spaces in Hierarchically Porous MOFs with Long-Chain Functional Ligands Inspired by Biological Signal Amplification. JACS AU 2025; 5:178-186. [PMID: 39886565 PMCID: PMC11775693 DOI: 10.1021/jacsau.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025]
Abstract
The creation of spatially coupled meso-/microenvironments with biomimetic compartmentalized functionalities is of great significance to achieve efficient signal transduction and amplification. Herein, using a soft-template strategy, UiO-67-type hierarchically mesoporous metal-organic frameworks (HMMOFs) were constructed to satisfy the requirements of such an artificial system. The key to the successful synthesis of HMUiO-67 is rooted in the utilization of the preformed cerium-oxo clusters as metal precursors, aligning the growth of MOF crystals with the mild conditions required for the self-assembly of the soft template. The adoption of long-chain functional 2,2'-bipyridine-5,5'-dicarboxylic acid ligands not only resulted in larger microporous sizes, facilitating the transport of various cascade reaction intermediates, but also provided anchorages for the introduction of enzyme-mimicking active sites. A cascade amplification system was designed based on the developed HMUiO-67, in which enzyme cascade reactions were initiated and relayed by a target analyte in the separate but coupled meso/micro spaces. As a proof of concept, natural acetylcholinesterase (AChE) and Cu-based laccase mimetics were integrated into HMMOFs, establishing a spatially coupled nanoreactor. The activity of AChE was triggered by the target analyte of carbaryl, while the amplified products of AChE catalysis mediated the activity of biomimetic enzyme in the closely proximate microporous spaces, producing further amplification of detectable signal. This enabled the entire cascade system to respond to minimal carbaryl with a limit of detection as low as approximately 2 nM. Such a model of cascade amplification is expected to set a conceptual guideline for the rational design of various bioreactors, serving as a sensitive response system for quantifying numerous target analytes.
Collapse
Affiliation(s)
- Yao Tong
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Xia
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Liu RL, Ren HM, Zhao S, Lin D, Cheng K, Li G, Wang DY. Inherent Ultrahigh Proton Conductivity of Two Highly Stable COOH-Functionalized Hafnium-Based Metal-Organic Frameworks. Inorg Chem 2025; 64:1183-1192. [PMID: 39757465 DOI: 10.1021/acs.inorgchem.4c04935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Although there has been some recent interest in the proton conductivity (σ) of highly stable carboxyl metal-organic frameworks (MOFs) made of tetravalent metal ions, given their potential applications in fuel cells and electrochemical sensing, research on MOFs constructed by hafnium(IV) ions needs to be expanded significantly. Based on this, we used two common and easily prepared phenylpoly(carboxylic acid) ligands, 1,2,4-phenyltricarboxylic acid and 1,2,4,5-phenyltetracarboxylic acid, to react with hafnium tetrachloride, respectively, creating two porous hafnium(IV)-based MOFs, UiO-66-COOH-Hf (1) and UiO-66-(COOH)2-Hf (2), with the same structure as UiO-66-Hf but with different numbers of free carboxylic groups. A series of stability assays revealed that the two MOFs had excellent structural rigidity, including thermal and water stability. More crucially, alternating current impedance experiments demonstrate that the σ of the two MOFs varies positively with humidity and temperature, reaching up to 10-3 S·cm-1 (1: 2.83 × 10-3 S·cm-1 and 2: 4.35 × 10-3 S·cm-1) under the right conditions (98% relative humidity and 100 °C). The latter roughly doubles the proton conductivity of the former, which is due to the difference in the number of free carboxyl groups, as confirmed by the structural analysis and proton conduction mechanism investigation. The high intrinsic σ of the two MOFs lays a solid foundation for their future application and affords new inspiration for developing high-performance proton-conductive materials.
Collapse
Affiliation(s)
- Rui-Lan Liu
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| | - Hui-Min Ren
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shuhui Zhao
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| | - Debo Lin
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| | - Kaipeng Cheng
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| | - Gang Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dan-Yang Wang
- School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China
| |
Collapse
|
4
|
Molavi H, Salimi MS. Green Synthesis of Cerium-Based Metal-Organic Framework (Ce-UiO-66 MOF) for Wastewater Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38032754 DOI: 10.1021/acs.langmuir.3c02384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Green synthesis of metal-organic frameworks (MOFs) in aqueous solutions under ambient conditions with reduced production costs and environmental effects is an efficient technique to transfer lab-scale production to industrial large scale. Hence, this work proposes a green, low-cost, sustainable, rapid, and innovative synthetic strategy to produce cerium-based (Ce-UiO-66) MOFs under ambient conditions in the presence of water as a green solvent. This synthetic strategy exhibits great potential compared to conventional solvothermal synthetic techniques, and it does not need external activation energy and organic solvents, which can achieve the standards of green chemistry. Ce-UiO-66 MOF was synthesized successfully and utilized as a green adsorbent to efficiently eliminate anionic Congo Red (CR) dye from dye-containing wastewater. The experimental adsorption results were well matched to the pseudo-second-order kinetic and Langmuir isotherm models, in which the maximum CR adsorption capacity was measured to be about 285.71 mg/g. To evidence the applicability of Ce-UiO-66 MOFs in CR adsorption, the CR adsorption reaction was performed in the presence of interfering pollutants [e.g., salts (NaCl, KCl, and MgCl2) and cationic organic dyes (Malachite Green (MG) and Methylene Blue (MB)], where the results prove the promising adsorption performances of Ce-UiO-66 MOFs toward CR dye. Interestingly, the synthesized adsorbent exhibited high structural stability during repeated adsorption-desorption cycles, where the surface area of MOFs decreased from 555 to 376 m2/g after three cycles, while its CR adsorption capacity decreased by only 10% compared to that of the fresh adsorbent. All these outstanding properties indicate that the Ce-UiO-66 MOFs will be an effective adsorbent for water and wastewater treatment applications.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran
| | - Mohammad Sepehr Salimi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), GavaZang, Zanjan 45137-66731, Iran
| |
Collapse
|
5
|
Shi C, Pu S, Wu L, Hou X. Concentration- and Self-Catalysis-Dominated Rapid Synthesis of Multifunctional UiO-66(Ce) for Dual-Mode Sensing of Tetracycline. Inorg Chem 2023; 62:18573-18582. [PMID: 37917528 DOI: 10.1021/acs.inorgchem.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Simple and rapid synthesis of multifunctional metal-organic frameworks (MOFs) at room temperature (RT) with their multifunction controllable is still appealing for further expansion of the practical applications of MOFs. Herein, in this work, rapid RT synthesis of a multifunctional UiO-66(Ce) [M-UiO-66(Ce)] with both oxidase-like activity and fluorescence emission properties was facilely achieved within 15 min through a straightforward reactant concentration modulation and self-catalytic postmodification strategy. Appropriate concentrations of cerium ammonium nitrate or 1,4-benzenedicarboxylic acid (BDC) were beneficial for the synthesis of UiO-66(Ce) with better crystallization. During the postmodification process, through regulation of the self-photocatalysis of UiO-66(Ce), a high conversion rate from BDC to BDC-OH of up to 14% can be obtained, resulting in a significantly enhanced fluorescence signal of M-UiO-66(Ce) within 2 min. Moreover, M-UiO-66(Ce) enabled the accurate and reliable detection of tetracycline (TC) in real samples. Besides, the colorimetric and fluorescence modes complemented each other, expanding the linear range of TC detection and exhibiting its great potential for practical applications. This work provides new insights for the convenient and rapid synthesis of multifunctional materials based on MOFs, which is favorable for promoting the large-scale preparation of MOFs and their practical application in on-site environmental pollutant sensing.
Collapse
Affiliation(s)
- Chaoting Shi
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shan Pu
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lan Wu
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
6
|
Öztürk Ö, Lessl AL, Höhn M, Wuttke S, Nielsen PE, Wagner E, Lächelt U. Peptide nucleic acid-zirconium coordination nanoparticles. Sci Rep 2023; 13:14222. [PMID: 37648689 PMCID: PMC10469198 DOI: 10.1038/s41598-023-40916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Ideal drug carriers feature a high loading capacity to minimize the exposure of patients with excessive, inactive carrier materials. The highest imaginable loading capacity could be achieved by nanocarriers, which are assembled from the therapeutic cargo molecules themselves. Here, we describe peptide nucleic acid (PNA)-based zirconium (Zr) coordination nanoparticles which exhibit very high PNA loading of [Formula: see text] w/w. This metal-organic hybrid nanomaterial class extends the enormous compound space of coordination polymers towards bioactive oligonucleotide linkers. The architecture of single- or double-stranded PNAs was systematically varied to identify design criteria for the coordination driven self-assembly with Zr(IV) nodes at room temperature. Aromatic carboxylic acid functions, serving as Lewis bases, and a two-step synthesis process with preformation of [Formula: see text] turned out to be decisive for successful nanoparticle assembly. Confocal laser scanning microscopy confirmed that the PNA-Zr nanoparticles are readily internalized by cells. PNA-Zr nanoparticles, coated with a cationic lipopeptide, successfully delivered an antisense PNA sequence for splicing correction of the [Formula: see text]-globin intron mutation IVS2-705 into a functional reporter cell line and mediated splice-switching via interaction with the endogenous mRNA splicing machinery. The presented PNA-Zr nanoparticles represent a bioactive platform with high design flexibility and extraordinary PNA loading capacity, where the nucleic acid constitutes an integral part of the material, instead of being loaded into passive delivery systems.
Collapse
Affiliation(s)
- Özgür Öztürk
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
- Department of Genetic and Bio Engineering, Alanya Alaaddin Keykubat University, Antalya, Türkiye
| | - Anna-Lina Lessl
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Miriam Höhn
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Stefan Wuttke
- Basque Center for Materials (BCMaterials), Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ernst Wagner
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany
| | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS), LMU Munich, 81377, Munich, Germany.
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Ghadim EE, Walker M, Walton RI. Rapid synthesis of cerium-UiO-66 MOF nanoparticles for photocatalytic dye degradation. Dalton Trans 2023; 52:11143-11157. [PMID: 37496421 DOI: 10.1039/d3dt00890h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
An unprecedented synthesis method is used to form a series of Ce-UiO-66-X (X = NH2, OH, H, NO2, COOH) metal-organic frameworks by precipitation from mixed solvents, with instantaneous crystallisation on combining separate solutions of ligands and metal precursors. This allows the first direct synthesis of Ce-UiO-66-OH. Powder X-ray diffraction (PXRD) shows that all materials are pure phase with a broadened profile that indicates nano-scale crystallite domain size. The effect of different functional groups on the benzene-1,4-dicarboxylate linker within the UiO-66 structure has been investigated on degradation of two cationic (methylene blue and rhodamine B) and two anionic (Congo red, and Alizarin red S) dyes under UV and visible light irradiation at room temperature. Analysis of the dye adsorption in the absence of light is accounted for using pseudo-first order kinetics, and the Ce-UiO-66-NH2, Ce-UiO-66-OH, and Ce-UiO-66-H materials display a considerable photocatalytic activity to degrade Alizarin red S and Congo red rapidly between 1 and 3 minutes. The materials show excellent photostability and recyclability under UV and visible light, with no loss of crystallinity seen by PXRD and activity maintained over 5 cycles, with 16 hours photostability for Ce-UiO-66-NH2.
Collapse
Affiliation(s)
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Richard I Walton
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
8
|
Metal-organic frameworks having hydroxy group: Nanoarchitectonics, preparation, and applications in adsorption, catalysis, and sensing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|