1
|
Chen W, Wang Y, Wang F, Zhang Z, Li W, Fang G, Wang F. Zinc Chemistries of Hybrid Electrolytes in Zinc Metal Batteries: From Solvent Structure to Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411802. [PMID: 39373284 DOI: 10.1002/adma.202411802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Indexed: 10/08/2024]
Abstract
Along with the booming research on zinc metal batteries (ZMBs) in recent years, operational issues originated from inferior interfacial reversibility have become inevitable. Presently, single-component electrolytes represented by aqueous solution, "water-in-salt," solid, eutectic, ionic liquids, hydrogel, or organic solvent system are hard to undertake independently the task of guiding the practical application of ZMBs due to their specific limitations. The hybrid electrolytes modulate microscopic interaction mode between Zn2+ and other ions/molecules, integrating vantage of respective electrolyte systems. They even demonstrate original Zn2+ mobility pattern or interfacial chemistries mechanism distinct from single-component electrolytes, providing considerable opportunities for solving electromigration and interfacial problems in ZMBs. Therefore, it is urgent to comprehensively summarize the zinc chemistries principles, characteristics, and applications of various hybrid electrolytes employed in ZMBs. This review begins with elucidating the chemical bonding mode of Zn2+ and interfacial physicochemical theory, and then systematically elaborates the microscopic solvent structure, Zn2+ migration forms, physicochemical properties, and the zinc chemistries mechanisms at the anode/cathode interfaces in each type of hybrid electrolytes. Among of which, the scotoma and amelioration strategies for the current hybrid electrolytes are actively exposited, expecting to provide referenceable insights for further progress of future high-quality ZMBs.
Collapse
Affiliation(s)
- Wenyong Chen
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yanyan Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Fengmei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Zihao Zhang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Wei Li
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guozhao Fang
- School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, China
| | - Fei Wang
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
2
|
Hu J, Wang W, Zhou B, Sun J, Chin WS, Lu L. Click Chemistry in Lithium-Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306622. [PMID: 37806765 DOI: 10.1002/smll.202306622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Lithium-metal batteries (LMBs) are considered the "holy grail" of the next-generation energy storage systems, and solid-state electrolytes (SSEs) are a kind of critical component assembled in LMBs. However, as one of the most important branches of SSEs, polymer-based electrolytes (PEs) possess several native drawbacks including insufficient ionic conductivity and so on. Click chemistry is a simple, efficient, regioselective, and stereoselective synthesis method, which can be used not only for preparing PEs with outstanding physical and chemical performances, but also for optimizing the stability of solid electrolyte interphase (SEI) layer and elevate the cycling properties of LMBs effectively. Here it is primarily focused on evaluating the merits of click chemistry, summarizing its existing challenges and outlining its increasing role for the designing and fabrication of advanced PEs. The fundamental requirements for reconstructing artificial SEI layer through click chemistry are also summarized, with the aim to offer a thorough comprehension and provide a strategic guidance for exploring the potentials of click chemistry in the field of LMBs.
Collapse
Affiliation(s)
- Ji Hu
- School of Materials Science and Engineering, School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium based Battery, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Wanhui Wang
- School of Materials Science and Engineering, School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Binghua Zhou
- Institute of Advanced Materials, State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Jianguo Sun
- Department of Mechanical Engineering, Department of Chemistry, National University of Singapore, Singapore, 117575, Singapore
| | - Wee Shong Chin
- Department of Mechanical Engineering, Department of Chemistry, National University of Singapore, Singapore, 117575, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, China
| | - Li Lu
- Department of Mechanical Engineering, Department of Chemistry, National University of Singapore, Singapore, 117575, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, China
| |
Collapse
|
3
|
Yao W, Zheng Z, Zhou J, Liu D, Song J, Zhu Y. A Minireview of the Solid-State Electrolytes for Zinc Batteries. Polymers (Basel) 2023; 15:4047. [PMID: 37896291 PMCID: PMC10610146 DOI: 10.3390/polym15204047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Aqueous zinc-ion batteries (ZIBs) have gained significant recognition as highly promising rechargeable batteries for the future due to their exceptional safety, low operating costs, and environmental advantages. Nevertheless, the widespread utilization of ZIBs for energy storage has been hindered by inherent challenges associated with aqueous electrolytes, including water decomposition reactions, evaporation, and liquid leakage. Fortunately, recent advances in solid-state electrolyte research have demonstrated great potential in resolving these challenges. Moreover, the flexibility and new chemistry of solid-state electrolytes offer further opportunities for their applications in wearable electronic devices and multifunctional settings. Nonetheless, despite the growing popularity of solid-state electrolyte-based-ZIBs in recent years, the development of solid-state electrolytes is still in its early stages. Bridging the substantial gap that exists is crucial before solid-state ZIBs become a practical reality. This review presents the advancements in various types of solid-state electrolytes for ZIBs, including film separators, inorganic additives, and organic polymers. Furthermore, it discusses the performance and impact of solid-state electrolytes. Finally, it outlines future directions for the development of solid-state ZIBs.
Collapse
Affiliation(s)
- Wangbing Yao
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China;
- Nanjing Gotion Battery Co., Ltd., Nanjing 211599, China
| | - Zhuoyuan Zheng
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Z.Z.); (J.Z.)
| | - Jie Zhou
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Z.Z.); (J.Z.)
| | - Dongming Liu
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China;
| | - Jinbao Song
- Nanjing Gotion Battery Co., Ltd., Nanjing 211599, China
| | - Yusong Zhu
- Nanjing Gotion Battery Co., Ltd., Nanjing 211599, China
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Z.Z.); (J.Z.)
| |
Collapse
|
4
|
Loh JR, Xue J, Lee WSV. Challenges and Strategies in the Development of Zinc-Ion Batteries. SMALL METHODS 2023:e2300101. [PMID: 37035953 DOI: 10.1002/smtd.202300101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Although promising, the practical use of zinc-ion batteries (ZIBs) remains plagued with uncontrollable dendrite growth, parasitic side reactions, and the high intercalation energy of divalent Zn2+ ions. Hence, much work has been conducted to alleviate these issues to maximize the energy density and cyclic life of the cell. In this holistic review, the mechanisms and rationale for the stated challenges shall be summarized, followed by the corresponding strategies employed to mitigate them. Thereafter, a perspective on present research and the outlook of ZIBs would be put forth in hopes to enhance their electrochemical properties in a multipronged approach.
Collapse
Affiliation(s)
- Jiong Rui Loh
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Wee Siang Vincent Lee
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| |
Collapse
|
5
|
Lv T, Peng Y, Zhang G, Jiang S, Yang Z, Yang S, Pang H. How About Vanadium-Based Compounds as Cathode Materials for Aqueous Zinc Ion Batteries? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206907. [PMID: 36683227 PMCID: PMC10131888 DOI: 10.1002/advs.202206907] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Aqueous zinc-ion batteries (AZIBs) stand out among many monovalent/multivalent metal-ion batteries as promising new energy storage devices because of their good safety, low cost, and environmental friendliness. Nevertheless, there are still many great challenges to exploring new-type cathode materials that are suitable for Zn2+ intercalation. Vanadium-based compounds with various structures, large layer spacing, and different oxidation states are considered suitable cathode candidates for AZIBs. Herein, the research advances in vanadium-based compounds in recent years are systematically reviewed. The preparation methods, crystal structures, electrochemical performances, and energy storage mechanisms of vanadium-based compounds (e.g., vanadium phosphates, vanadium oxides, vanadates, vanadium sulfides, and vanadium nitrides) are mainly introduced. Finally, the limitations and development prospects of vanadium-based compounds are pointed out. Vanadium-based compounds as cathode materials for AZIBs are hoped to flourish in the coming years and attract more and more researchers' attention.
Collapse
Affiliation(s)
- Tingting Lv
- Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shu Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Zilin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shengyang Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
6
|
Li X, Chen Z, Yang Y, Liang S, Lu B, Zhou J. The phosphate cathodes for aqueous zinc-ion batteries. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01083f] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We categorize phosphate-based cathodes in zinc-ion battery and highlight the relationship between structural properties and energy storage mechanisms. The major problems faced by each kind of materials and rational optimization strategies are summarized.
Collapse
Affiliation(s)
- Xi Li
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Zhenjie Chen
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410004, China
| | - Yongqiang Yang
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China
| | - Shuquan Liang
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha 410083, China
| | - Jiang Zhou
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha 410083, China
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| |
Collapse
|