1
|
Zhang M, Zhang Z, Li Y. Mechanisms and Origins of Regio- and Stereoselectivities in NHC-Catalyzed [3 + 3] Annulation of α-Bromoenals and 5-Aminoisoxazoles: A DFT Study. J Org Chem 2024; 89:10748-10759. [PMID: 38996054 DOI: 10.1021/acs.joc.4c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Density functional theory (DFT) calculations were conducted to explore the mechanisms and origins of regio- and stereoselectivities underlying the [3 + 3] annulation reaction between α-bromoenals and 5-aminoisoxazoles with N-heterocyclic carbene (NHC) as the catalyst. The reaction occurs in nine steps: (1) nucleophilic addition of NHC to α-bromoenal, (2) Breslow intermediate formation through 1,2-proton transfer, (3) debromination, (4) α,β-unsaturated acyl azolium intermediate formation via 1,3-proton transfer, (5) addition of α,β-unsaturated acyl azolium intermediate to 5-aminoisoxazole, (6) deprotonation, (7) protonation, (8) ring closure, and (9) elimination of NHC. For the fifth step, 1,2-addition suggested in the experiment was not supported by our results. Instead, we found that Michael addition is energetically the most feasible pathway and the stereo-controlling step that preferentially provides the S-configuration product. DFT-computed results and experimental findings agree well. Analysis of distortion/interaction reveals that lower distortion energy leads to stability of the transition state corresponding to the S-configuration product. Global reactivity index analysis indicates that the behavior of the NHC catalyst differs significantly before and after the Breslow intermediate debromination. Before debromination, the nucleophilicity of α-bromoenal is enhanced by addition to NHC. However, after debromination, the α,β-unsaturated acyl azole generates and acts as an electrophilic reagent.
Collapse
Affiliation(s)
- Mingchao Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| | - Yan Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| |
Collapse
|
2
|
Shamnad A, Nayak KH, Babu BP. Metal-Free Bisamidation of N-Tosylhydrazones with Carboxylic Acids Promoted by Tetrabutylammonium Iodide and tert-Butyl Hydroperoxide. J Org Chem 2024; 89:6545-6554. [PMID: 38630068 DOI: 10.1021/acs.joc.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
A versatile reaction between N-tosylhydrazones and carboxylic acids to access bisamides is reported. This metal-free, room-temperature reaction was catalyzed by TBAI, while TBHP served as the oxidant. Broad substrate scope and good functional group tolerance are the key features of the strategy. Subsequent intramolecular N-arylation of suitably substituted bisamides readily afforded functionalized 3-indazolones.
Collapse
Affiliation(s)
- Ali Shamnad
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore 575025, Karnataka, India
| | - Kalinga H Nayak
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore 575025, Karnataka, India
| | - Beneesh P Babu
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore 575025, Karnataka, India
| |
Collapse
|
3
|
Ramarao J, Rambabu M, Suresh S. NHC-Catalyzed Formal [4 + 2] Annulation of o-Formyl-Tethered Michael Acceptors and Ynones to Access Highly Functionalized Naphthalene Derivatives. Org Lett 2024; 26:1780-1786. [PMID: 38411544 DOI: 10.1021/acs.orglett.3c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Herein we demonstrate a novel organocatalytic method to access multifunctionalized naphthalenes via an NHC-catalyzed reaction of ynones and o-formyl-tethered Michael acceptors. The presented method proceeds through an intermolecular Stetter reaction-cyclization-aromatization cascade and represents a rare example of organocatalytic benzannulation for the synthesis of substituted arenes by using ynone as a two-carbon synthon. The current method has broad substrate scope; postsynthetic transformations and gram-scale syntheses highlight the practicality of the displayed methodology.
Collapse
Affiliation(s)
- Jakkula Ramarao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Molugumati Rambabu
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Surisetti Suresh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
4
|
Ramarao J, Behera PC, Reddy MS, Suresh S. Carbene-Catalyzed Tandem Imine Umpolung-Intramolecular Aza-Conjugate Addition-Oxidation to Access N-Substituted Isoindolinones. J Org Chem 2024; 89:414-424. [PMID: 38148719 DOI: 10.1021/acs.joc.3c02187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Herein, we have described a novel N-heterocyclic carbene (NHC)-catalyzed synthesis of N-substituted isoindolinone acetates. The presented transformation proceeds through NHC-catalyzed tandem imine umpolung-intramolecular aza-Michael addition followed by oxidation, while molecular oxygen in air acts as a sole oxidant. Atom efficiency, operational simplicity, large-scale syntheses, and mild reaction conditions are the salient features of this method. Mechanistic studies were indicative of the necessity of molecular oxygen in air as oxidant for the conversion of imine to amide.
Collapse
Affiliation(s)
- Jakkula Ramarao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Purna Chandra Behera
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Manyam Subbi Reddy
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Surisetti Suresh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
5
|
Mitchell J, Hussain WA, Bansode AH, O’Connor RM, Wise DE, Choe MH, Parasram M. Photoinduced Nitroarenes as Versatile Anaerobic Oxidants for Accessing Carbonyl and Imine Derivatives. Org Lett 2023; 25:6517-6521. [PMID: 37680131 PMCID: PMC10496125 DOI: 10.1021/acs.orglett.3c02292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Indexed: 09/09/2023]
Abstract
Herein, we report a protocol for the anaerobic oxidation of alcohols, amines, aldehydes, and imines promoted by photoexcited nitroarenes. Mechanistic studies support the idea that photoexcited nitroarenes undergo double hydrogen atom transfer (HAT) steps with alcohols and amines to provide the respective ketone and imine products. In the presence of aldehydes and imines, successive HAT and oxygen atom transfer (OAT) events occur to yield carboxylic acids and amides, respectively. This transformation is amenable to a continuous-photoflow setup, which led to reduced reaction times.
Collapse
Affiliation(s)
- Joshua
K. Mitchell
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Waseem A. Hussain
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Ajay H. Bansode
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Ryan M. O’Connor
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Dan E. Wise
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Michael H. Choe
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Marvin Parasram
- Department of Chemistry, New
York University, New York, New York 10003, United States
| |
Collapse
|
6
|
De Risi C, Brandolese A, Di Carmine G, Ragno D, Massi A, Bortolini O. Oxidative N-Heterocyclic Carbene Catalysis. Chemistry 2023; 29:e202202467. [PMID: 36205918 PMCID: PMC10099058 DOI: 10.1002/chem.202202467] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 11/05/2022]
Abstract
N-Heterocyclic carbene (NHC) catalysis is a by now consolidated organocatalytic platform for a number of synthetic (asymmetric) transformations via diverse reaction modes/intermediates. In addition to the typical umpolung processes involving acyl anion/homoenolate equivalent species, implementation of protocols under oxidative conditions greatly expands the possibilities of this methodology. Oxidative NHC-catalysis allows for oxidative and oxygenative transformations through specific manipulations of Breslow-type species depending upon the oxidant used (external oxidant or O2 /air), the derived NHC-bound intermediates paving the way to non-umpolung processes through activation of carbon atoms and heteroatoms. This review is intended to update the state of the art in oxidative NHC-catalyzed reactions that appeared in the literature from 2014 to present, with a strong focus to crucial intermediates and their mechanistic implications.
Collapse
Affiliation(s)
- Carmela De Risi
- Dipartimento di Scienze Chimiche, Farmaceutiche ed AgrarieUniversità di FerraraVia L. Borsari, 4644121FerraraItaly
| | - Arianna Brandolese
- Dipartimento di Scienze dell'Ambiente e della PrevenzioneUniversità di FerraraVia L. Borsari, 4644121FerraraItaly
| | - Graziano Di Carmine
- Dipartimento di Scienze Chimiche, Farmaceutiche ed AgrarieUniversità di FerraraVia L. Borsari, 4644121FerraraItaly
| | - Daniele Ragno
- Dipartimento di Scienze Chimiche, Farmaceutiche ed AgrarieUniversità di FerraraVia L. Borsari, 4644121FerraraItaly
| | - Alessandro Massi
- Dipartimento di Scienze Chimiche, Farmaceutiche ed AgrarieUniversità di FerraraVia L. Borsari, 4644121FerraraItaly
| | - Olga Bortolini
- Dipartimento di Scienze dell'Ambiente e della PrevenzioneUniversità di FerraraVia L. Borsari, 4644121FerraraItaly
| |
Collapse
|
7
|
He J, Jiang W. EFFECTS OF HIGH-INTENSITY TRAINING ON BASKETBALL PLAYERS. REV BRAS MED ESPORTE 2023. [DOI: 10.1590/1517-8692202329012022_0624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
ABSTRACT Introduction: Basketball represents much more than a high-intensity exercise. Like most ball games, it is a continuous movement system. Objective: Study the effect of high-intensity interval training (HIT) on the aerobic metabolism of young basketball players. Methods: The author randomly divided male basketball players into an upper limb HIT group, lower limb HIT group, and control group by experimental method and statistical analysis, the control group received routine training, and aerobic exercise capacity was measured by increasing load test before and after the experiment. Results: During the lower extremity experiment, the mean power (MP) and peak power (PP) of the 4th full-force pedal stroke in the lower extremity HIT group increased (P<0.05), and the T/C ratio of the lower extremity HIT group was also implemented (P<0.05). There was no significant change in the indices of the control group (P>0.05). Conclusion: Upper extremity HIT in young male basketball players improved only upper extremity aerobic exercise capacity. In contrast, lower-extremity HIT improved both upper-extremity aerobic exercise capacity and lower-extremity anaerobic exercise capacity. Level of evidence II; Therapeutic studies - investigating treatment outcomes.
Collapse
Affiliation(s)
- Juncong He
- Yunnan University of Finance and Economics, China
| | | |
Collapse
|
8
|
Yadav S, Nanubolu JB, Suresh S. Sequential One-Pot Carbene-Catalyzed Intramolecular Stetter Reaction and Acid-Mediated Condensation: Access to Heteroatom Analogues of π-Extended Polyaromatic Hydrocarbons. Org Lett 2022; 24:6930-6935. [PMID: 36129395 DOI: 10.1021/acs.orglett.2c02693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this Letter, we disclose a simple and effective method to access a variety of phenanthro[9,10-b]furan and 1H-dibenzo[e,g]indole derivatives based on the design of a carbene-catalyzed intramolecular Stetter reaction followed by a Paal-Knorr reaction in one-pot. These compounds are a class of π-extended polycyclic aromatic hydrocarbon (PAH) derivatives containing an oxygen/nitrogen atom. The practical utility of the developed transformation was demonstrated on the gram scales and postsynthetic transformations thereof.
Collapse
Affiliation(s)
- Sanjay Yadav
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Jagadeesh Babu Nanubolu
- Laboratory of X-ray Crystallography, Department of Analytical Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - Surisetti Suresh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
9
|
Ragno D, De Risi C, Massi A, Di Carmine G, Toldo S, Leonardi C, Bortolini O. Regiodivergent Synthesis of Benzothiazole‐based Isosorbide Imidates by Oxidative N‐Heterocyclic Carbene Catalysis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Daniele Ragno
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Carmela De Risi
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Alessandro Massi
- University of Ferrara: Universita degli Studi di Ferrara DepartmentEnvironmental and Prevention Sciences ITALY
| | - Graziano Di Carmine
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Sofia Toldo
- University of Ferrara: Universita degli Studi di Ferrara Environmental and Prevention Sciences ITALY
| | - Costanza Leonardi
- University of Ferrara: Universita degli Studi di Ferrara Chemical, Pharmaceutical and Agricultural Sciences ITALY
| | - Olga Bortolini
- Universita of Ferrara DepartmentEnvironmental and Prevention Sciences Via Borsari 46 44121 Ferrara ITALY
| |
Collapse
|