1
|
Lukas F, Findlay MT, Fillols M, Templ J, Savino E, Martin B, Allmendinger S, Furegati M, Noël T. Graphitic Carbon Nitride as a Photocatalyst for Decarboxylative C(sp 2)-C(sp 3) Couplings via Nickel Catalysis. Angew Chem Int Ed Engl 2024; 63:e202405902. [PMID: 38807439 DOI: 10.1002/anie.202405902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
The development of robust and reliable methods for the construction of C(sp2)-C(sp3) bonds is vital for accessing an increased array of structurally diverse scaffolds in drug discovery and development campaigns. While significant advances towards this goal have been achieved using metallaphotoredox chemistry, many of these methods utilise photocatalysts based on precious-metals due to their efficient redox processes and tuneable properties. However, due to the cost, scarcity, and toxicity of these metals, the search for suitable replacements should be a priority. Here, we show the use of commercially available heterogeneous semiconductor graphitic carbon nitride (gCN) as a photocatalyst, combined with nickel catalysis, for the cross-coupling between aryl halide and carboxylic acid coupling partners. gCN has been shown to engage in single-electron-transfer (SET) and energy-transfer (EnT) processes for the formation of C-X bonds, and in this manuscript we overcome previous limitations to furnish C-C over C-O bonds using carboxylic acids. A broad scope of both aryl halides and carboxylic acids is presented, and recycling of the photocatalyst demonstrated. The mechanism of the reaction is also investigated.
Collapse
Affiliation(s)
- Florian Lukas
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Michael T Findlay
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Méritxell Fillols
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Johanna Templ
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/E163, 1060, Vienna, Austria
| | - Elia Savino
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | | | | | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Mohamadpour F, Amani AM. Photocatalytic systems: reactions, mechanism, and applications. RSC Adv 2024; 14:20609-20645. [PMID: 38952944 PMCID: PMC11215501 DOI: 10.1039/d4ra03259d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
The photocatalytic field revolves around the utilization of photon energy to initiate various chemical reactions using non-adsorbing substrates, through processes such as single electron transfer, energy transfer, or atom transfer. The efficiency of this field depends on the capacity of a light-absorbing metal complex, organic molecule, or substance (commonly referred to as photocatalysts or PCs) to execute these processes. Photoredox techniques utilize photocatalysts, which possess the essential characteristic of functioning as both an oxidizing and a reducing agent upon activation. In addition, it is commonly observed that photocatalysts exhibit optimal performance when irradiated with low-energy light sources, while still retaining their catalytic activity under ambient temperatures. The implementation of photoredox catalysis has resuscitated an array of synthesis realms, including but not limited to radical chemistry and photochemistry, ultimately affording prospects for the development of the reactions. Also, photoredox catalysis is utilized to resolve numerous challenges encountered in medicinal chemistry, as well as natural product synthesis. Moreover, its applications extend across diverse domains encompassing organic chemistry and catalysis. The significance of photoredox catalysts is rooted in their utilization across various fields, including biomedicine, environmental pollution management, and water purification. Of course, recently, research has evaluated photocatalysts in terms of cost, recyclability, and pollution of some photocatalysts and dyes from an environmental point of view. According to these new studies, there is a need for critical studies and reviews on photocatalysts and photocatalytic processes to provide a solution to reduce these limitations. As a future perspective for research on photocatalysts, it is necessary to put the goals of researchers on studies to overcome the limitations of the application and efficiency of photocatalysts to promote their use on a large scale for the development of industrial activities. Given the significant implications of the subject matter, this review seeks to delve into the fundamental tenets of the photocatalyst domain and its associated practical use cases. This review endeavors to demonstrate the prospective of a powerful tool known as photochemical catalysis and elucidate its underlying tenets. Additionally, another goal of this review is to expound upon the various applications of photocatalysts.
Collapse
Affiliation(s)
- Farzaneh Mohamadpour
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
3
|
Singh PP, Sinha S, Gahtori P, Tivari S, Srivastava V. Recent advances of decatungstate photocatalyst in HAT process. Org Biomol Chem 2024; 22:2523-2538. [PMID: 38456306 DOI: 10.1039/d4ob00213j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The decatungstate anion (W10O324-) appears to exhibit especially interesting properties as a photocatalyst. Because of its unique photocatalytic properties, it is now recognised as a promising tool in organic chemistry. This study examines recent advances in decatungstate chemistry, primarily concerned with synthetic and, to some degree, mechanistic challenges. In this short review we have selected to give a number of illustrative examples that demonstrate the various applications of decatungstate in the hydrogen atom transfer (HAT) process.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research, Prayagraj, U.P.-211010, India.
| | - Surabhi Sinha
- Department of Chemistry, United College of Engineering & Research, Prayagraj, U.P.-211010, India.
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002 Uttarakhand, India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, U.P.-211002, India.
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, U.P.-211002, India.
| |
Collapse
|
4
|
Benedet M, Rizzi GA, Gasparotto A, Zeng L, Pagot G, Olsson E, Di Noto V, Maccato C, Barreca D. Efficient photoactivated hydrogen evolution promoted by Cu xO-gCN-TiO 2-Au ( x = 1,2) nanoarchitectures. RSC Adv 2024; 14:7221-7228. [PMID: 38419682 PMCID: PMC10901216 DOI: 10.1039/d4ra00773e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
In this work, we propose an original and potentially scalable synthetic route for the fabrication of CuxO-gCN-TiO2-Au (x = 1,2) nanoarchitectures, based on Cu foam anodization, graphitic carbon nitride liquid-phase deposition, and TiO2/Au sputtering. A thorough chemico-physical characterization by complementary analytical tools revealed the formation of nanoarchitectures featuring an intimate contact between the system components and a high dispersion of gold nanoparticles. Modulation of single component interplay yielded excellent functional performances in photoactivated hydrogen evolution, corresponding to a photocurrent of ≈-5.7 mA cm-2 at 0.0 V vs. the reversible hydrogen electrode (RHE). These features, along with the very good service life, represent a cornerstone for the conversion of natural resources, as water and largely available sunlight, into added-value solar fuels.
Collapse
Affiliation(s)
- Mattia Benedet
- Department of Chemical Sciences, Padova University, INSTM 35131 Padova Italy
- CNR-ICMATE, INSTM, Department of Chemical Sciences, Padova University 35131 Padova Italy
| | - Gian Andrea Rizzi
- Department of Chemical Sciences, Padova University, INSTM 35131 Padova Italy
- CNR-ICMATE, INSTM, Department of Chemical Sciences, Padova University 35131 Padova Italy
| | - Alberto Gasparotto
- Department of Chemical Sciences, Padova University, INSTM 35131 Padova Italy
- CNR-ICMATE, INSTM, Department of Chemical Sciences, Padova University 35131 Padova Italy
| | - Lunjie Zeng
- Department of Physics, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Gioele Pagot
- Section of Chemistry for the Technology (ChemTech), Department of Industrial Engineering, Padova University, INSTM 35131 Padova Italy
| | - Eva Olsson
- Department of Physics, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Vito Di Noto
- Section of Chemistry for the Technology (ChemTech), Department of Industrial Engineering, Padova University, INSTM 35131 Padova Italy
| | - Chiara Maccato
- Department of Chemical Sciences, Padova University, INSTM 35131 Padova Italy
- CNR-ICMATE, INSTM, Department of Chemical Sciences, Padova University 35131 Padova Italy
| | - Davide Barreca
- CNR-ICMATE, INSTM, Department of Chemical Sciences, Padova University 35131 Padova Italy
| |
Collapse
|
5
|
Zhang Y, Gan S, Li J, Tian Y, Chen X, Su G, Hu Y, Wang N. Effect of atomic substitution and structure on thermal conductivity in monolayers H-MN and T-MN (M = B, Al, Ga). Phys Chem Chem Phys 2024; 26:6256-6264. [PMID: 38305726 DOI: 10.1039/d3cp05731c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Finding materials with suitable thermal conductivity (κ) is crucial for improving energy efficiency, reducing carbon emissions, and achieving sustainability. Atomic substitution and structural adjustments are commonly used methods. By comparing the κ of two different structures of two-dimensional (2D) IIIA-nitrides and their corresponding carbides, we explored whether atomic substitution has the same impact on κ in different structures. All eight materials exhibit normal temperature dependence, with κ decreasing as the temperature rises. Both structures are single atomic layers of 2D materials, forming M-N bonds, with the difference being that H-MN consists of hexagonal rings, while T-MN consists of tetragonal and octagonal rings. 2D IIIA-nitrides provide a good illustration of the impact of atomic substitution and structure on κ. On a logarithmic scale of κ, it approximates two parallel lines, indicating that different structures exhibit similar trends of κ reduction under the same conditions of atomic substitution. We analyzed the mechanisms behind the decreasing trend in κ from a phonon mode perspective. The main reason for the decrease in κ is that heavier atoms lower lattice vibrations, reducing phonon frequencies. Electronegativity increases, altering bonding characteristics and increasing anharmonicity. Reduced symmetry in complex structures decreases phonon group velocities and enhances phonon anharmonicity, leading to decreased phonon lifetimes. It's noteworthy that we found that atomic substitution and structure significantly affect hydrodynamic phonon transport as well. Both complex structures and atomic substitution simultaneously reduce the effects of hydrodynamic phonon transport. By comparing the impact of κ on two different structures of 2D IIIA-nitrides and their corresponding carbides, we have deepened our understanding of phonon transport in 2D materials. Heavier atomic substitution and more complex structures result in reduced κ and decreased hydrodynamic phonon transport effects. This research is likely to have a significant impact on the study of micro- and nanoscale heat transfer, including the design of materials with specific heat transfer properties for future applications.
Collapse
Affiliation(s)
- Yulin Zhang
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China.
| | - Siyu Gan
- School of Science, Key Laboratory of High-Performance Scientific Computation, Xihua University, Chengdu, 610039, China.
| | - Jialu Li
- School of Science, Key Laboratory of High-Performance Scientific Computation, Xihua University, Chengdu, 610039, China.
| | - Yi Tian
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China.
| | - Xihao Chen
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, China.
| | - Yu Hu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China.
- Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China
| | - Ning Wang
- School of Science, Key Laboratory of High-Performance Scientific Computation, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
6
|
Beg MZ, Singh PK, Singh PP, Srivastava M, Srivastava V. Metal-free visible light mediated direct C-H amination of benzoxazole with secondary amines. Mol Divers 2024; 28:61-71. [PMID: 36609739 DOI: 10.1007/s11030-022-10595-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023]
Abstract
An efficient visible light mediated, eosin Y catalyzed direct C-H oxidative amination of benzoxazoles with secondary amines has been developed, which providing a straightforward, green, and environmentally benign access to a wide variety of substituted benzoxazole-2-amines under mild reaction conditions. The biological studies such as drug-likeness and molecular docking are also carried out on the molecule.
Collapse
Affiliation(s)
- Mohd Zaheeruddin Beg
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, 211002, India
| | - Pravin K Singh
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, 211002, India
| | - Praveen P Singh
- Department of Chemistry, United College of Engineering & Research, Naini, Prayagraj, 211010, India
| | - Manish Srivastava
- Department of Chemistry, University of Allahabad, Prayagraj, 211002, India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
7
|
Singh PP, Sinha S, Nainwal P, Singh PK, Srivastava V. Novel applications of photobiocatalysts in chemical transformations. RSC Adv 2024; 14:2590-2601. [PMID: 38226143 PMCID: PMC10788709 DOI: 10.1039/d3ra07371h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
Photocatalysis has proven to be an effective approach for the production of reactive intermediates under moderate reaction conditions. The possibility for the green synthesis of high-value compounds using the synergy of photocatalysis and biocatalysis, benefiting from the selectivity of enzymes and the reactivity of photocatalysts, has drawn growing interest. Mechanistic investigations, substrate analyses, and photobiocatalytic chemical transformations will all be incorporated in this review. We seek to shed light on upcoming synthetic opportunities in the field by precisely describing mechanistically unique techniques in photobiocatalytic chemistry.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Prayagraj U. P.-211010 India
| | - Surabhi Sinha
- Department of Chemistry, United College of Engineering & Research Prayagraj U. P.-211010 India
| | - Pankaj Nainwal
- School of Pharmacy, Graphic Era Hill University Dehradun Uttarakhand India
| | - Pravin K Singh
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U. P.-211002 India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U. P.-211002 India
| |
Collapse
|
8
|
Wei Y, Wang R, Wang M, Hu L, Zhang X, Xu Y, Liu Y, Lan F, Chen J. Research status and prospects of organic photocatalysts in algal inhibition and sterilization: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5013-5031. [PMID: 38147259 DOI: 10.1007/s11356-023-31665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
An increasing amount of sewage has been discharged into water bodies in the progression of industrialization and urbanization, causing serious water pollution. Meanwhile, the increase of nutrients in the water induces water eutrophication and rapid growth of algae. Photocatalysis is a common technique for algal inhibition and sterilization. To improve the utilization of visible light and the conversion efficiency of solar energy, more organic photocatalytic materials have been gradually developed. In addition to ultraviolet light, partial infrared light and visible light could also be used by organic photocatalysts compared with inorganic photocatalysts. Simultaneously, organic photocatalysts also exhibit favorable stability. Most organic photocatalysts can maintain a high degradation rate for algae and bacteria after several cycles. There are various organic semiconductors, mainly including small organic molecules, such as perylene diimide (PDI), porphyrin (TCPP), and new carbon materials (fullerene (C60), graphene (GO), and carbon nanotubes (CNT)), and large organic polymers, such as graphite phase carbon nitride (g-C3N4), polypyrrole (PPy), polythiophene (PTH), polyaniline (PANI), and polyimide (PI). In this review, the classification and synthesis methods of organic photocatalytic materials were elucidated. It was demonstrated that the full visible spectral response (400-750 nm) could be stimulated by modifying organic photocatalysts. Moreover, some problems were summarized based on the research status related to algae and bacteria, and corresponding suggestions were also provided for the development of organic photocatalytic materials.
Collapse
Affiliation(s)
- Yushan Wei
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Renjun Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Mengjiao Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Lijun Hu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Xinyi Zhang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Yuling Xu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Yanyan Liu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Feng Lan
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China.
| |
Collapse
|
9
|
Vattikuti SVP, Goud JP, Rosaiah P, Prasad PR, Tighezza AM, Shim J. Enhanced Sunlight-Powered Photocatalysis and Methanol Oxidation Activities of Co 3O 4-Embedded Polymeric Carbon Nitride Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2508. [PMID: 37764537 PMCID: PMC10534687 DOI: 10.3390/nano13182508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
The contamination of water by organic substances poses a significant global challenge. To address these pressing environmental and energy concerns, this study emphasizes the importance of developing effective photocatalysts powered by sunlight. In this research, we achieved the successful synthesis of a novel photocatalyst comprised of polymeric carbon nitride (CN) nanosheets embedded with Co3O4 material, denoted as CN-CO. The synthesis process involved subjecting the mixture to 500 °C for 10 h in a muffle furnace. Structural and morphological analyses confirmed the formation of CN-CO nanostructures, which exhibited remarkable enhancements in photocatalytic activity for the removal of methylene blue (MB) pollutants under replicated sunlight. After 90 min of exposure, the degradation rate reached an impressive 98.9%, surpassing the degradation rates of 62.3% for pure CN and 89.32% for pure Co3O4 during the same time period. This significant improvement can be attributed to the exceptional light captivation capabilities and efficient charge separation abilities of the CN-CO nanostructures. Furthermore, the CN-CO nanostructures demonstrated impressive photocurrent density-time (j-t) activity under sunlight, with a photocurrent density of 2.51 μA/cm2 at 0.5 V. The CN-CO nanostructure exhibited excellent methanol oxidation reaction (MOR) activity with the highest current density of 83.71 mA/cm2 at an optimal 2 M methanol concentration, benefiting from the synergy effects of CN and CO in the nanostructure. Overall, this study presents a straightforward and effective method for producing CN-based photocatalysts decorated with semiconductor nanosized materials. The outcomes of this research shed light on the design of nanostructures for energy-related applications, while also providing insights into the development of efficient photocatalytic materials for addressing environmental challenges.
Collapse
Affiliation(s)
| | - J. Pundareekam Goud
- Department of Physics, Koneru Lakshmaiah Education Foundation, Bowrampet, Hyderabad 500043, Telangana, India
| | - P. Rosaiah
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - P. Reddy Prasad
- Department of Chemistry, Institute of Aeronautical Engineering, Hyderabad 500043, Telangana, India
| | - Ammar M. Tighezza
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
10
|
Wei J, Wang X, Tu C, Long T, Bu Y, Wang H, Jeyakumar P, Jiang J, Deng S. Remediation technologies for neonicotinoids in contaminated environments: Current state and future prospects. ENVIRONMENT INTERNATIONAL 2023; 178:108044. [PMID: 37364306 DOI: 10.1016/j.envint.2023.108044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Neonicotinoids (NEOs) are synthetic insecticides with broad-spectrum insecticidal activity and outstanding efficacy. However, their extensive use and persistence in the environment have resulted in the accumulation and biomagnification of NEOs, posing significant risks to non-target organisms and humans. This review provides a summary of research history, advancements, and highlighted topics in NEOs remediation technologies and mechanisms. Various remediation approaches have been developed, including physiochemical, microbial, and phytoremediation, with microbial and physicochemical remediation being the most extensively studied. Recent advances in physiochemical remediation have led to the development of innovative adsorbents, photocatalysts, and optimized treatment processes. High-efficiency degrading strains with well-characterized metabolic pathways have been successfully isolated and cultured for microbial remediation, while many plant species have shown great potential for phytoremediation. However, significant challenges and gaps remain in this field. Future research should prioritize isolating, domesticating or engineering high efficiency, broad-spectrum microbial strains for NEO degradation, as well as developing synergistic remediation techniques to enhance removal efficiency on multiple NEOs with varying concentrations in different environmental media. Furthermore, a shift from pipe-end treatment to pollution prevention strategies is needed, including the development of green and economically efficient alternatives such as biological insecticides. Integrated remediation technologies and case-specific strategies that can be applied to practical remediation projects need to be developed, along with clarifying NEO degradation mechanisms to improve remediation efficiency. The successful implementation of these strategies will help reduce the negative impact of NEOs on the environment and human health.
Collapse
Affiliation(s)
- Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Guangdong Technology and Equipment Research Center for Soil and Water Pollution Control, Zhaoqing University, Zhaoqing 526061, Guangdong, China
| | - Xiaoyu Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China.
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Yuanqing Bu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Jinlin Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China.
| |
Collapse
|
11
|
Hu W, Yang H, Wang C. Progress in photocatalytic CO 2 reduction based on single-atom catalysts. RSC Adv 2023; 13:20889-20908. [PMID: 37441031 PMCID: PMC10334474 DOI: 10.1039/d3ra03462c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Reduced CO2 emissions, conversion, and reuse are critical steps toward carbon peaking and carbon neutrality. Converting CO2 into high-value carbon-containing compounds or fuels may effectively address the energy shortage and environmental issues, which is consistent with the notion of sustainable development. Photocatalytic CO2 reduction processes have become one of the research focuses, where single-atom catalysts have demonstrated significant benefits owing to their excellent percentage of atom utilization. However, among the crucial challenges confronting contemporary research is the production of efficient, low-cost, and durable photocatalysts. In this paper, we offer a comprehensive overview of the study growth on single-atom catalysts for photocatalytic CO2 reduction reactions, describe several techniques for preparing single-atom catalysts, and discuss the advantages and disadvantages of single-atom catalysts and present the study findings of three single-atom photocatalysts with TiO2, g-C3N4 and MOFs materials as carriers based on the interaction between single atoms and carriers, and finally provide an outlook on the innovation of photocatalytic CO2 reduction reactions.
Collapse
Affiliation(s)
- Wanyu Hu
- College of Materials Science and Engineering Northeast Forestry University Harbin 150040 China
| | - Haiyue Yang
- College of Materials Science and Engineering Northeast Forestry University Harbin 150040 China
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education Northeast Forestry University Harbin 150040 China
| | - Chengyu Wang
- College of Materials Science and Engineering Northeast Forestry University Harbin 150040 China
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education Northeast Forestry University Harbin 150040 China
| |
Collapse
|
12
|
Guo RT, Zhang ZR, Xia C, Li CF, Pan WG. Recent progress of cocatalysts loaded on carbon nitride for selective photoreduction of CO 2 to CH 4. NANOSCALE 2023; 15:8548-8577. [PMID: 37128998 DOI: 10.1039/d3nr00242j] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A photocatalytic system driven by solar light is one of the promising strategies for converting CO2 into valuable energy. The reduction of CO2 to CH4 is widely studied since CH4 has a high energy density as the main component of nonrenewable natural gas. Therefore, it is necessary to develop semiconductor materials with high photocatalytic activity and CH4 selectivity. Graphitic carbon nitride (g-C3N4/CN) has attracted widespread attention for photocatalytic CO2 reduction due to its excellent redox ability and visible light response. A hybrid system constructed by loading cocatalysts on g-C3N4 can significantly improve the yield of target products, and serve as a general platform to explore the mechanism of the CO2 reduction reaction. Herein, we briefly introduce the theory of selective CO2 photoreduction and the basic properties of cocatalysts. Then, several typical configurations and modification strategies of cocatalyst/CN systems for promoting CH4 selective production are presented in detail. In particular, we systematically summarize the application of cocatalyst/CN composite photocatalysts in the selective reduction of CO2 to methane, according to the classification of cocatalysts (monometal, bimetal, metal-based compound, and nanocarbon materials). Finally, the challenges and perspectives for developing cocatalyst/g-C3N4 systems with high CH4 selectivity are presented to guide the rational design of catalysts with high performance in the future.
Collapse
Affiliation(s)
- Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Cheng Xia
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, People's Republic of China.
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai 200090, People's Republic of China
| |
Collapse
|
13
|
Alebachew N, Murthy HCA, Gonfa BA, von Eschwege KG, Langner EHG, Coetsee E, Demissie TB. Nanocomposites with ZrO 2@S-Doped g-C 3N 4 as an Enhanced Binder-Free Sensor: Synthesis and Characterization. ACS OMEGA 2023; 8:13775-13790. [PMID: 37091396 PMCID: PMC10116625 DOI: 10.1021/acsomega.2c08174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
This study describes new electrocatalyst materials that can detect and reduce environmental pollutants. The synthesis and characterization of semiconductor nanocomposites (NCs) made from active ZrO2@S-doped g-C3N4 is presented. Electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) measurements were used to examine electron transfer characteristics of the synthesized samples. Using X-ray diffraction (XRD) and high-resolution scanning electron microscopy (HR-SEM) techniques, inclusion of monoclinic ZrO2 on flower-shaped S-doped-g-C3N4 was visualized. High-resolution X-ray photoelectron spectroscopy (XPS) revealed successful doping of ZrO2 into the lattice of S-doped g-C3N4. The electron transport mechanism between the electrolyte and the fluorine tin-oxide electrode (FTOE) was enhanced by the synergistic interaction between ZrO2 and S-doped g-C3N4 as co-modifiers. Development of a platform with improved conductivity based on an FTOE modified with ZrO2@S-doped g-C3N4 NCs resulted in an ideal platform for the detection of 4-nitrophenol (4-NP) in water. The electrocatalytic activity of the modified electrode was evaluated through determination of 4-NP by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) under optimum conditions (pH 5). ZrO2@S-doped g-C3N4 (20%)/FTOE exhibited good electrocatalytic activity with a linear range from 10 to 100 μM and a low limit of detection (LOD) of 6.65 μM. Typical p-type semiconductor ZrO2@S-doped g-C3N4 NCs significantly impact the superior detection of 4-NP due to its size, shape, optical properties, specific surface area and effective separation of electron-hole pairs. We conclude that the superior electrochemical sensor behavior of the ZrO2@S-doped g-C3N4 (20%)/FTOE surfaces results from the synergistic interaction between S-doped g-C3N4 and ZrO2 surfaces that produce an active NC interface.
Collapse
Affiliation(s)
- Nigussie Alebachew
- Department
of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama 251, Ethiopia
| | - H. C. Ananda Murthy
- Department
of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama 251, Ethiopia
- Department
of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Science
(SIMATS), Saveetha University, Chennai 600077, Tamil
Nadu, India
| | - Bedasa Abdisa Gonfa
- Department
of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama 251, Ethiopia
| | - Karel G. von Eschwege
- Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Ernst H. G. Langner
- Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| | - Elizabeth Coetsee
- Department
of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA9310, South Africa
| | - Taye B. Demissie
- Department
of Chemistry, University of Botswana, P.bag UB 00704 Gaborone, Botswana
| |
Collapse
|
14
|
Tivari S, Singh PK, Singh PP, Srivastava V. Visible light-induced photoredox catalyzed C-N coupling of amides with alcohols. RSC Adv 2022; 12:35221-35226. [PMID: 36540212 PMCID: PMC9730743 DOI: 10.1039/d2ra07065k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/02/2022] [Indexed: 03/23/2024] Open
Abstract
A visible-light-mediated method for the construction of N-monoalkylated products from easily available benzamides and benzyl alcohol in the presence of eosin Y has been developed. The reaction proceeded smoothly, for a wide range of derivatives of benzamides and benzyl alcohols, to give the desired products in good to excellent yields. Biological studies, such as those on drug-likeness and molecular docking, are carried out on the molecules.
Collapse
Affiliation(s)
- Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| | - Pravin K Singh
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| | - Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Naini Prayagraj-211010 Uttar Pradesh India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| |
Collapse
|
15
|
Alebachew N, Murthy HCA, Abdissa B, Demissie TB, von Eschwege KG, Langner EHG, Coetsee-Hugo L. Synthesis and characterization of CuO@S-doped g-C 3N 4 based nanocomposites for binder-free sensor applications. RSC Adv 2022; 12:29959-29974. [PMID: 36321104 PMCID: PMC9580512 DOI: 10.1039/d2ra04752g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
This study presents the simultaneous exfoliation and modification of heterostructured copper oxide incorporated sulfur doped graphitic carbon nitride (CuO@S-doped g-C3N4) nanocomposites (NCs) synthesized via chemical precipitation and pyrolysis techniques. The results revealed that the approach is feasible and highly efficient in producing 2-dimensional CuO@S-doped g-C3N4 NCs. The findings also showed a promising technique for enhancing the optical and electrical properties of bulk g-C3N4 by combining CuO nanoparticles (NPs) with S-doped g-C3N4. The crystallite and the average size of the NCs were validated using X-ray diffraction (XRD) studies. Incorporation of the cubical structured CuO on flower shaped S-doped-g-C3N4 was visualized and characterized through XRD, HR-SEM/EDS/SED, FT-IR, BET, UV-Vis/DRS, PL, XPS and impedance spectroscopy. The agglomerated NCs had various pore sizes, shapes and nanosized crystals, while being photo-active in the UV-vis range. The synergistic effect of CuO and S-doped g-C3N4 as co-modifiers greatly facilitates the electron transfer process between the electrolyte and the bare glassy carbon electrode. Specific surface areas of the NCs clearly revealed modification of bulk S-doped g-C3N4 when CuO NPs are incorporated with S-doped g-C3N4, providing a suitable environment for the binder-free decorated electrode with sensing behavior for hazardous pollutants. This was tested for the preparation of a 4-nitrophenol sensor.
Collapse
Affiliation(s)
- Nigussie Alebachew
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology UniversityP.O. Box 1888AdamaEthiopia
| | - H. C. Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology UniversityP.O. Box 1888AdamaEthiopia,Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Science (SIMAT), Saveetha UniversityChennai-600077Tamil NaduIndia
| | - Bedassa Abdissa
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology UniversityP.O. Box 1888AdamaEthiopia
| | - Taye B. Demissie
- Department of Chemistry, University of BotswanaPbag UB 00704GaboroneBotswana
| | - Karel G. von Eschwege
- Department of Chemistry, University of the Free StateP.O Box 339BloemfonteinSouth Africa
| | - Ernst H. G. Langner
- Department of Chemistry, University of the Free StateP.O Box 339BloemfonteinSouth Africa
| | - Liza Coetsee-Hugo
- Department of Chemistry, University of the Free StateP.O Box 339BloemfonteinSouth Africa
| |
Collapse
|
16
|
Singh PP, Sinha S, Pandey G, Srivastava V. Molybdenum disulfide (MoS 2) based photoredox catalysis in chemical transformations. RSC Adv 2022; 12:29826-29839. [PMID: 36321108 PMCID: PMC9578401 DOI: 10.1039/d2ra05695j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/15/2022] Open
Abstract
Photoredox catalysis has been explored for chemical reactions by irradiation of photoactive catalysts with visible light, under mild and environmentally benign conditions. Furthermore, this methodology permits the activation of abundant chemicals into valuable products through novel mechanisms that are otherwise inaccessible. In this context, MoS2 has drawn attention due to its excellent solar spectral response and its notable electrical, optical, mechanical and magnetic properties. MoS2 has a number of characteristic properties like tunable band gap, enhanced absorption of visible light, a layered structure, efficient photon electron conversion, good photostability, non-toxic nature and quantum confinement effects that make it an ideal photocatalyst and co-catalyst for chemical transformations. Recently, MoS2 has gained synthetic utility in chemical transformations. In this review, we will discuss MoS2 properties, structure, synthesis techniques, and photochemistry along with modifications of MoS2 to enhance its photocatalytic activity with a focus on its applications and future challenges.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Prayagraj 211002 Uttar Pradesh India
| | - Surabhi Sinha
- Department of Chemistry, United College of Engineering & Research Prayagraj 211002 Uttar Pradesh India
| | - Geetika Pandey
- Department of Physics, United University Prayagraj 211012 Uttar Pradesh India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| |
Collapse
|