1
|
Gaspar A, Garrido EMP, Borges F, Garrido JM. Biological and Medicinal Properties of Natural Chromones and Chromanones. ACS OMEGA 2024; 9:21706-21726. [PMID: 38799321 PMCID: PMC11112580 DOI: 10.1021/acsomega.4c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Emerging threats to human health require a concerted effort to search for new treatment therapies. One of the biggest challenges is finding medicines with few or no side effects. Natural products have historically contributed to major advances in the field of pharmacotherapy, as they offer special characteristics compared to conventional synthetic molecules. Interest in natural products is being revitalized, in a continuous search for lead structures that can be used as models for the development of new medicines by the pharmaceutical industry. Chromone and chromanones are recognized as privileged structures and useful templates for the design of diversified therapeutic molecules with potential pharmacological interest. Chromones and chromanones are widely distributed in plants and fungi, and significant biological activities, namely antioxidant, anti-inflammatory, antimicrobial, antiviral, etc., have been reported for these compounds, suggesting their potential as lead drug candidates. This review aims to update the literature published over the last 6 years (2018-2023) regarding the natural occurrence and biological activity of chromones and chromanones, highlighting the recent findings and the perspectives that they hold for future research and applications namely in health, cosmetic, and food industries.
Collapse
Affiliation(s)
- Alexandra Gaspar
- CIQUP-IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169−007 Porto, Portugal
| | | | - Fernanda Borges
- CIQUP-IMS,
Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169−007 Porto, Portugal
| | | |
Collapse
|
2
|
Guan J, Zhang PP, Wang XH, Guo YT, Zhang ZJ, Li P, Lin LP. Structure-Guided Discovery of Diverse Cytotoxic Dimeric Xanthones/Chromanones from Penicillium chrysogenum C-7-2-1 and Their Interconversion Properties. JOURNAL OF NATURAL PRODUCTS 2024; 87:238-251. [PMID: 38354306 DOI: 10.1021/acs.jnatprod.3c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Xanthone-chromanone homo- or heterodimers are regarded as a novel class of topoisomerase (Topo) inhibitors; however, limited information about these compounds is currently available. Here, 14 new (1-14) and 6 known tetrahydroxanthone chromanone homo- and heterodimers (15-20) are reported as isolated from Penicillium chrysogenum C-7-2-1. Their structures and absolute configurations were unambiguously demonstrated by a combination of spectroscopic data, single-crystal X-ray diffraction, modified Mosher's method, and electronic circular dichroism analyses. Plausible biosynthetic pathways are proposed. For the first time, it was discovered that tetrahydroxanthones can convert to chromanones in water, whereas chromone dimerization does not show this property. Among them, compounds 5, 7, 8, and 16 exhibited significant cytotoxicity against H23 cell line with IC50 values of 6.9, 6.4, 3.9, and 2.6 μM, respectively.
Collapse
Affiliation(s)
- Jing Guan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Pan-Pan Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Xin-Hui Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Yu-Tong Guo
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Zi-Jin Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Peng Li
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| | - Li-Ping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Tang Y, Hu J, Guo Z, Bai J, Du Q, Zhang T, Dai S, Yu L, Zhang D. Eleuthemarins A and B, two new isocoumarin derivatives from the Arctic fungus Eleutheromyces sp. CPCC 401592. J Antibiot (Tokyo) 2023; 76:728-730. [PMID: 37857884 DOI: 10.1038/s41429-023-00667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Two new isocoumarin derivatives, eleuthemarins A (1) and B (2), were isolated from the Arctic fungus Eleutheromyces sp. CPCC 401592. Their structures and absolute configurations were elucidated through spectroscopic methods, quantum chemical calculations of NMR shifts, and calculated electronic circular dichroism. This is the first report for the chemical investigation of the genus Eleutheromyces. Compounds 1 and 2 showed selective cytotoxic activities against H460, A549, and HCT116 cancer cell lines with IC50 values in the range of 24.1-57.3 μM, respectively. Compound 1 displayed weak antibacterial activities.
Collapse
Affiliation(s)
- Yan Tang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Pharmacy, Yantai University, Yantai, China
| | - Jun Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinglin Bai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingrong Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengjun Dai
- School of Pharmacy, Yantai University, Yantai, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Dewu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Iantas J, Savi DC, Ponomareva LV, Thorson JS, Rohr J, Glienke C, Shaaban KA. Paecilins Q and R: Antifungal Chromanones Produced by the Endophytic Fungus Pseudofusicoccum stromaticum CMRP4328. PLANTA MEDICA 2023; 89:1178-1189. [PMID: 36977488 PMCID: PMC10698238 DOI: 10.1055/a-2063-5481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemical investigation of the endophyte Pseudofusicoccum stromaticum CMRP4328 isolated from the medicinal plant Stryphnodendron adstringens yielded ten compounds, including two new dihydrochromones, paecilins Q (1: ) and R (2: ). The antifungal activity of the isolated metabolites was assessed against an important citrus pathogen, Phyllosticta citricarpa. Cytochalasin H (6: ) (78.3%), phomoxanthone A (3: ) (70.2%), phomoxanthone B (4: ) (63.1%), and paecilin Q (1: ) (50.5%) decreased in vitro the number of pycnidia produced by P. citricarpa, which are responsible for the disease dissemination in orchards. In addition, compounds 3: and 6: inhibited the development of citrus black spot symptoms in citrus fruits. Cytochalasin H (6: ) and one of the new compounds, paecilin Q (1: ), appear particularly promising, as they showed strong activity against this citrus pathogen, and low or no cytotoxic activity. The strain CMRP4328 of P. stromaticum and its metabolites deserve further investigation for the control of citrus black spot disease.
Collapse
Affiliation(s)
- Jucélia Iantas
- Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Curitiba, Brazil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Kentucky, United States
| | - Daiani Cristina Savi
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- Department of Biomedicine, Centro Universitário Católica de Santa Catarina, Joinville, Brazil
| | - Larissa V. Ponomareva
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Kentucky, United States
| | - Jon S. Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Kentucky, United States
| | - Jürgen Rohr
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
| | - Chirlei Glienke
- Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Curitiba, Brazil
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Khaled A. Shaaban
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Kentucky, United States
| |
Collapse
|
5
|
Tang Y, Gu G, Wang J, Guo Z, Zhang T, Cen S, Dai S, Yu L, Zhang D. Four new chromone derivatives from the Arctic fungus Phoma muscivora CPCC 401424 and their antiviral activities. J Antibiot (Tokyo) 2023; 76:88-92. [PMID: 36536084 DOI: 10.1038/s41429-022-00588-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The crude extract of the Arctic fungus Phoma muscivora CPCC 401424 displayed anti-influenza A virus activities which led us to investigated their secondary metabolites. Four new chromone derivatives, phomarcticones A-D (1-4) and five known chromone analogs (5-9) have been isolated from Arctic fungus Phoma muscivora CPCC 401424. Compounds 3 and 4 possess rare sulfoxide groups in chromone derivatives. Their structures and absolute configurations were elucidated by extensive analysis of spectroscopic data, electronic circular dichroism, and comparison with reported data. Compounds 3, 7, and 9 showed significant anti-influenza A virus activities with the IC50 values of 24.4, 4.2, and 2.7 μM, respectively.
Collapse
Affiliation(s)
- Yan Tang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Pharmacy, Yantai University, Yantai, China
| | - Guowei Gu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengjun Dai
- School of Pharmacy, Yantai University, Yantai, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Dewu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|