1
|
Zhang Y, Wang B, Cai J, Yang Y, Tang C, Zheng X, Li H, Xu F. Enrichment and separation technology for evaluation of circulating tumor cells. Talanta 2025; 282:127025. [PMID: 39406084 DOI: 10.1016/j.talanta.2024.127025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024]
Abstract
Circulating tumor cells (CTCs) are tumor cells that exist in human peripheral blood, which could spread to other tissues or organs via the blood circulation system and develop into metastatic foci, leading to tumor recurrence or metastasis in postoperative patients and thereby increasing the mortality of malignant tumor patients. Evaluation of CTC levels can be used for tumor metastasis prediction, prognosis evaluation, drug exploitation, individualized treatment, liquid biopsy, etc., which exhibit outstanding clinical application prospects. In recent years, accurately capturing and analyzing CTCs has become a research hotspot in the early diagnosis and precise treatment of tumors. This review summarized various enrichment and isolation technologies for evaluating CTCs based on the design principle and discussed the challenges and perspectives in this field.
Collapse
Affiliation(s)
- Yanjun Zhang
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Bing Wang
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Junwen Cai
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuting Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chen Tang
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaoqun Zheng
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, 110000, China
| | - Feng Xu
- The Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Lin SH, Tsai YJ, Su TC, Lai SL, Jen CP. Separation of Lung Cancer Cells From Mixed Cell Samples Using Aptamer-Modified Magnetic Beads and Permalloy Micromagnets. Electrophoresis 2024; 45:2054-2064. [PMID: 39498696 DOI: 10.1002/elps.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024]
Abstract
This study involved the design and fabrication of a microfluidic chip integrated with permalloy micromagnets. The device was used with aptamer-modified magnetic beads (MBs) of various sizes to successfully separate lung cancer cells from a mixture of other cells. The overall separation efficiency was evaluated based on the ratios of cells in the different outlets and inlets of the chip. The results showed efficiencies ranging from 43.4% to 50.2% for MB sizes between 1.36 and 4.50 µm. Interestingly, efficiency slightly decreased as the size of the MBs increased, contrary to predictions. Further examination revealed that larger MBs exerted gravitational force on the cell-bound MBs at low flow rates, causing the targets to settle before reaching the main microchannel region. This was attributed to fluidic resistance caused by a size mismatch between the inlet tube and the microfluidic conduit. An increase in cell accumulation at the inlet was observed with larger MB sizes due to gravity. Therefore, the definition of effective separation efficiency was revised to exclude the effect of cell accumulation at the inlet. Effective separation efficiencies were found to be 71.6%, 76.4%, and 79.4% for MB sizes of 1.36, 3.00, and 4.50 µm, respectively. The study concluded that larger MBs interacted more with the magnetic force, resulting in better separation. However, cells with smaller MBs were more likely to evade the magnetic force. The investigation provides valuable insights into isolating lung cancer cells using this method, with the potential for clinical application in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan (ROC)
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan (ROC)
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan (ROC)
| | - Yun-Jung Tsai
- Translational Pathology Core Laboratory, Changhua Christian Hospital, Changhua, Taiwan (ROC)
| | - Tzu-Cheng Su
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan (ROC)
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan (ROC)
| | - Shih-Lun Lai
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan (ROC)
| | - Chun-Ping Jen
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan (ROC)
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (ROC)
| |
Collapse
|
3
|
Kordzadeh-Kermani V, Ashrafizadeh SN, Madadelahi M. Dielectrophoretic separation/classification/focusing of microparticles using electrified lab-on-a-disc platforms. Anal Chim Acta 2024; 1310:342719. [PMID: 38811136 DOI: 10.1016/j.aca.2024.342719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Separation, classification, and focusing of microparticles are essential issues in microfluidic devices that can be implemented in two categories: using labeling and label-free methods. Label-free methods differentiate microparticles based on their inherent properties, including size, density, shape, electrical conductivity/permittivity, and magnetic susceptibility. Dielectrophoresis is an advantageous label-free technique for this objective. Besides, centrifugal microfluidic devices exploit centrifugal forces to move liquid and particles. The simultaneous combination of dielectrophoretic and centrifugal forces exerted on microparticles still needs to be scrutinized more to predict their trajectories in such devices. RESULTS An integrated system utilizing two categories in microfluidics is proposed: dielectrophoretic manipulation of microparticles and centrifugal-driven microfluidics, followed by a numerical analysis. In this regard, we assumed a rectangular microchannel with internal unilateral planar electrodes equipped with three equal-sized outlets placed radially on a centrifugal platform where microparticles flow toward the disc's outer edge. The effect of different coordinate-based parameters, including radial and lateral distances (X and Y offsets)/tilting angles toward the radius direction (α), on the particles' movement was investigated. Additionally, the effect of operational parameters, including applied voltage, the microchannel width, the number of enabled electrodes, the diameter of particles, and the configuration of electrodes, were analyzed, and the distributions of particles toward the outlets were monitored. It was found that enhanced particle focusing becomes possible at lower rotation speeds and higher electric field values. Furthermore, the proposed centrifugal-DEP system's efficiency for classifying red blood cells/platelets and Live/Dead yeast cells systems was evaluated. SIGNIFICANCE Our integrated system is introduced as a novel method for focusing and classifying various microparticles with no need for sheath flows, having the ability to conduct particles at desired routes and focusing width. Furthermore, the system effectively separates various bioparticles and offers ease of operation and high-efficiency throughput over conventional dielectrophoretic devices.
Collapse
Affiliation(s)
- Vahid Kordzadeh-Kermani
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran
| | - Seyed Nezameddin Ashrafizadeh
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran.
| | - Masoud Madadelahi
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, 64849, NL, Mexico.
| |
Collapse
|
4
|
Li H, Ren Y, He M, Qi H. Nanoparticle manipulation based on chiral plasmon effects. Phys Chem Chem Phys 2024; 26:17860-17868. [PMID: 38884593 DOI: 10.1039/d4cp01718h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Chiral plasmonic structures have garnered increasing attention owing to their distinctive chiroptical response. Localized surface plasmon resonance can significantly enhance the circular dichroism and local electromagnetic field of chiral plasmonic structures, resulting in enhanced electromagnetic forces acting on surrounding nanoparticles. Moreover, the circular dichroism response of chiral structures provides an effective means for macroscopic adjustment of microscopic electromagnetic fields. However, chiral plasmon effects are naturally related to angular momentum, and particle control studies of chirality usually focus on angular momentum. This paper proposes a particle manipulation method utilizing chiral light-matter interactions. Through optimization of the optical response of the chiral structure, the direction of electromagnetic forces exerted on surrounding polystyrene particles reverses upon a change in the incident light's handedness. According to this characteristic, the movement direction control of polystyrene particles with a diameter of 100 nm was achieved. By altering the handedness of a single circularly polarized light, more than 94% high-precision particle manipulation was achieved, reducing the complexity of particle manipulation. This microfluidic method has significant implications for advancing microfluidic research and chiral applications.
Collapse
Affiliation(s)
- Huaxin Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yatao Ren
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, China
| | - Mingjian He
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, China
| | - Hong Qi
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, China
| |
Collapse
|
5
|
Wei YJ, Wei X, Zhang X, Wu CX, Cai JY, Chen ML, Wang JH. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells. Talanta 2024; 273:125884. [PMID: 38508128 DOI: 10.1016/j.talanta.2024.125884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
A hydrodynamic-based microfluidic chip consisted of two function units that could not only separate tumor cells (TCs) from whole blood but also remove residual blood cells was designed. The separation of TCs was achieved by a straight contraction-expansion array (CEA) microchannel on the front end of the chip. The addition of contractive structure brought a micro-vortex like Dean vortex that promoted cell focusing in the channel, while when cells entered the dilated region, the wall-induced lift force generated by the channel wall gave cells a push away from the wall. As the wall-induced lift force is proportional to the third power of the cell diameter, TCs with larger diameter will have a larger lateral migration under the wall-induced lift force, realizing the separation of TCs from blood sample. Fluorescent particles with diameters of 19.3 μm and 4.5 μm were used to simulate TCs and red blood cells, respectively, to verify the separation capacity of the proposed CEA microchannel for particles with different diameter. And a separation efficiency 98.7% for 19.3 μm particles and a removal rate 96.2% for 4.5 μm particles was observed at sample flow rate of 10 μL min-1 and sheath flow rate of 190 μL min-1. In addition, a separation efficiency about 96.1% for MCF-7 cells (stained with DiI) and removal rates of 96.2% for red blood cells (RBCs) and 98.7% for white blood cells (WBCs) were also obtained under the same condition. However, on account of the large number of blood cells in the blood, there will be a large number of blood cells remained in the isolated TCs, so a purification unit based on hydrodynamic filtration (HDF) was added after the separation microchannel. The purification channel is a size-dictated cell filter that can remove residual blood cells but retain TCs, thus achieving the purification of TCs. Combined the CEA microchannel and the purifier, the microchip facilitates sorting of MCF-7 cells from whole blood with a separation rate about 95.3% and a removal rate over 99.99% for blood cells at a sample flow rate of 10 μL min-1, sheath flow rate of 190 μL min-1 and washing flow rate of 63 μL min-1.
Collapse
Affiliation(s)
- Yu-Jia Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Cheng-Xing Wu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ji-Ying Cai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| |
Collapse
|
6
|
Shanehband N, Naghib SM. Recent advances in nano/microfluidics-based cell isolation techniques for cancer diagnosis and treatments. Biochimie 2024; 220:122-143. [PMID: 38176605 DOI: 10.1016/j.biochi.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/26/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Miniaturization has improved significantly in the recent decade, which has enabled the development of numerous microfluidic systems. Microfluidic technologies have shown great potential for separating desired cells from heterogeneous samples, as they offer benefits such as low sample consumption, easy operation, and high separation accuracy. Microfluidic cell separation approaches can be classified into physical (label-free) and biological (labeled) methods based on their working principles. Each method has remarkable and feasible benefits for the purposes of cancer detection and therapy, as well as the challenges that we have discussed in this article. In this review, we present the recent advances in microfluidic cell sorting techniques that incorporate both physical and biological aspects, with an emphasis on the methods by which the cells are separated. We first introduce and discuss the biological cell sorting techniques, followed by the physical cell sorting techniques. Additionally, we explore the role of microfluidics in drug screening, drug delivery, and lab-on-chip (LOC) therapy. In addition, we discuss the challenges and future prospects of integrated microfluidics for cell sorting.
Collapse
Affiliation(s)
- Nahid Shanehband
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| |
Collapse
|
7
|
Zeid AM, Mostafa IM, Lou B, Xu G. Advances in miniaturized nanosensing platforms for analysis of pathogenic bacteria and viruses. LAB ON A CHIP 2023; 23:4160-4172. [PMID: 37668185 DOI: 10.1039/d3lc00674c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Pathogenic bacteria and viruses are the main causes of infectious diseases all over the world. Early diagnosis of such infectious diseases is a critical step in management of their spread and treatment of the infection in its early stages. Therefore, the innovation of smart sensing platforms for point-of-care diagnosis of life-threatening infectious diseases such as COVID-19 is a prerequisite to isolate the patients and provide them with suitable treatment strategies. The developed diagnostic sensors should be highly sensitive, specific, ultrafast, portable, cheap, label-free, and selective. In recent years, different nanosensors have been developed for the detection of bacterial and viral pathogens. We focus here on label-free miniaturized nanosensing platforms that were efficiently applied for pathogenic detection in biological matrices. Such devices include nanopore sensors and nanostructure-integrated lab-on-a-chip sensors that are characterized by portability, simplicity, cost-effectiveness, and ultrafast analysis because they avoid the time-consuming sample preparation steps. Furthermore, nanopore-based sensors could afford single-molecule counting of viruses in biological specimens, yielding high-sensitivity and high-accuracy detection. Moreover, non-invasive nanosensors that are capable of detecting volatile organic compounds emitted from the diseased organ to the skin, urine, or exhaled breath were also reviewed. The merits and applications of all these nanosensors for analysis of pathogenic bacteria and viruses in biological matrices will be discussed in detail, emphasizing the importance of artificial intelligence in advancing specific nanosensors.
Collapse
Affiliation(s)
- Abdallah M Zeid
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Islam M Mostafa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Farahinia A, Zhang W, Badea I. Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115300. [PMID: 37300027 DOI: 10.3390/s23115300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
The treatment of cancers is a significant challenge in the healthcare context today. Spreading circulating tumor cells (CTCs) throughout the body will eventually lead to cancer metastasis and produce new tumors near the healthy tissues. Therefore, separating these invading cells and extracting cues from them is extremely important for determining the rate of cancer progression inside the body and for the development of individualized treatments, especially at the beginning of the metastasis process. The continuous and fast separation of CTCs has recently been achieved using numerous separation techniques, some of which involve multiple high-level operational protocols. Although a simple blood test can detect the presence of CTCs in the blood circulation system, the detection is still restricted due to the scarcity and heterogeneity of CTCs. The development of more reliable and effective techniques is thus highly desired. The technology of microfluidic devices is promising among many other bio-chemical and bio-physical technologies. This paper reviews recent developments in the two types of microfluidic devices, which are based on the size and/or density of cells, for separating cancer cells. The goal of this review is to identify knowledge or technology gaps and to suggest future works.
Collapse
Affiliation(s)
- Alireza Farahinia
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|