1
|
Kincses A, Szemerédi N, Benito‐Lama M, Dózsai D, Csonka Á, Domínguez‐Álvarez E, Spengler G. Selenocompounds as Potent Efflux Pump Inhibitors on Gram-positive Bacteria. ChemMedChem 2025; 20:e202400691. [PMID: 39565046 PMCID: PMC11733404 DOI: 10.1002/cmdc.202400691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/03/2024] [Indexed: 11/21/2024]
Abstract
In recent years, selenocompounds have gained increasing attention as potential anticancer and antibacterial agents. Several selenoderivatives have been confirmed to act as MDR efflux pump inhibitors, based on their in vitro results against the bacterial AcrAB-TolC system and the cancer MDR efflux pump P-glycoprotein. Efflux pumps can contribute directly or indirectly to the virulence of bacteria, as they can reduce the intracellular concentration of antibacterial substances by expelling them out of the cell. The present work aims to study the antibacterial and efflux pump inhibiting properties of four families of selenoesters, namely aspirin-selenoesters, phenone-selenoesters, hydroxy-selenoesters, and benzyl-selenoesters. The real-time ethidium bromide accumulation assay confirmed that these derivatives inhibited the efflux systems of methicillin-resistant Staphylococcus aureus (MRSA) without exerting any antibacterial effect. The relative expression of efflux pump gene of NorA transporter was also monitored in the presence of the most potent derivatives on reference S. aureus, finding that these derivatives could change the expression of the tested efflux pump gene. Regarding the anti-biofilm activity, aspirin-selenoesters, benzyl-selenoesters, and hydroxy-selenoesters could efficiently inhibit the biofilm production of the MRSA strain. It can be concluded that selenocompounds could act as efflux pump inhibitors, thus reducing the virulence of biofilm-producing bacteria.
Collapse
Affiliation(s)
- Annamária Kincses
- Department of Medical MicrobiologyAlbert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical SchoolUniversity of SzegedSemmelweis street 66725SzegedHungary
- Institute of PharmacognosyFaculty of PharmacyUniversity of SzegedEötvös street 66720SzegedHungary
| | - Nikoletta Szemerédi
- Department of Medical MicrobiologyAlbert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical SchoolUniversity of SzegedSemmelweis street 66725SzegedHungary
| | - Miguel Benito‐Lama
- Instituto de Química Orgánica General (IQOG)Consejo Superior de Organizaciones Científicas (CSIC)Juan de la Cierva 328006MadridSpain
| | - Dávid Dózsai
- Department of TraumatologyAlbert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical SchoolUniversity of SzegedSemmelweis street 66725SzegedHungary
| | - Ákos Csonka
- Department of TraumatologyAlbert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical SchoolUniversity of SzegedSemmelweis street 66725SzegedHungary
| | - Enrique Domínguez‐Álvarez
- Instituto de Química Orgánica General (IQOG)Consejo Superior de Organizaciones Científicas (CSIC)Juan de la Cierva 328006MadridSpain
| | - Gabriella Spengler
- Department of Medical MicrobiologyAlbert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical SchoolUniversity of SzegedSemmelweis street 66725SzegedHungary
| |
Collapse
|
2
|
Kosaristanova L, Bytesnikova Z, Fialova T, Pekarkova J, Svec P, Ondreas F, Jemelikova V, Ridoskova A, Makovicky P, Sivak L, Dolejska M, Zouharova M, Slama P, Adam V, Smerkova K. In vivo evaluation of selenium-tellurium based nanoparticles as a novel treatment for bovine mastitis. J Anim Sci Biotechnol 2024; 15:173. [PMID: 39707565 DOI: 10.1186/s40104-024-01128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Bovine mastitis is one of the main causes of reduced production in dairy cows. The infection of the mammary gland is mainly caused by the bacterium Staphylococcus aureus, whose resistant strains make the treatment of mastitis with conventional antibiotics very difficult and result in high losses. Therefore, it is important to develop novel therapeutic agents to overcome the resistance of mastitis-causing strains. In this study, novel selenium-tellurium based nanoparticles (SeTeNPs) were synthesized and characterized. Their antibacterial activity and biocompatibility were evaluated both in vitro and in vivo using a bovine model. A total of 10 heifers were divided into experimental and control groups (5 animals each). After intramammary infection with methicillin resistant S. aureus (MRSA) and the development of clinical signs of mastitis, a dose of SeTeNPs was administered to all quarters in the experimental group. RESULTS Based on in vitro tests, the concentration of 149.70 mg/L and 263.95 mg/L of Se and Te, respectively, was used for application into the mammary gland. Three days after SeTeNPs administration, MRSA counts in the experimental group showed a significant reduction (P < 0.01) compared to the control group. The inhibitory effect observed within the in vitro experiments was thus confirmed, resulting in the suppression of infection in animals. Moreover, the superior biocompatibility of SeTeNPs in the organism was demonstrated, as the nanoparticles did not significantly alter the inflammatory response or histopathology at the site of application, i.e., mammary gland, compared to the control group (P > 0.05). Additionally, the metabolic profile of the blood plasma as well as the histology of the main organs remained unaffected, indicating that the nanoparticles had no adverse effects on the organism. CONCLUSIONS Our findings suggest that SeTeNPs can be used as a promising treatment for bovine mastitis in the presence of resistant bacteria. However, the current study is limited by its small sample size, making it primarily a proof of the concept for the efficacy of intramammary-applied SeTeNPs. Therefore, further research with a larger sample size is needed to validate these results.
Collapse
Affiliation(s)
- Ludmila Kosaristanova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Tatiana Fialova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Jana Pekarkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
- Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, Brno, 616 00, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Frantisek Ondreas
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, 612 00, Czech Republic
- Contipro a.s., Dolní Dobrouč 401, Dolní Dobrouč, 561 02, Czech Republic
| | - Vendula Jemelikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Peter Makovicky
- Department of Histology and Embryology, Faculty of Medicine, University of Ostrava, Syllabova 9, Ostrava - Vítkovice, 700 03, Czech Republic
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 845 05, Slovak Republic
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno, 612 42, Czech Republic
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, Brno, 612 42, Czech Republic
- Department of Microbiology, Faculty of Medicine, Charles University, Alej Svobody 76, Pilsen, 323 00, Czech Republic
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
| | - Monika Zouharova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, Brno, 613 00, Czech Republic.
| |
Collapse
|
3
|
Ahmed F, Zhang D, Tang X, Malakar PK. Targeting Spore-Forming Bacteria: A Review on the Antimicrobial Potential of Selenium Nanoparticles. Foods 2024; 13:4026. [PMID: 39766969 PMCID: PMC11728422 DOI: 10.3390/foods13244026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
Spore-forming bacterial species pose a serious threat to food plants and healthcare facilities that use high-temperature processing and sterilizing techniques to sanitize medical equipment and food items. These severe processing conditions trigger sporulation, which is the process by which spore-forming bacteria, such as those of the Bacillus and Clostridium species, begin to produce spores, which are extremely resilient entities capable of withstanding adverse environmental circumstances. Additionally, these spores are resistant to a wide range of disinfectants and antibacterial therapies, such as hydrolytic enzymes, radiation, chemicals, and antibiotics. Because of their ability to combat bacteria through several biological pathways, selenium nanoparticles (SeNPs) have emerged as an effective method for either eliminating or preventing the formation of spore-forming bacteria. This review aims to investigate every potential pathway of entry and mechanism by which SeNPs impact bacterial species that produce spores. Additionally, SeNPs' antibacterial efficacy against several infections is reviewed. To precisely explain the antibacterial mechanism of SeNPs and the various factors that can affect their effectiveness, more research is necessary.
Collapse
Affiliation(s)
- Faraz Ahmed
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China;
- International Research Centre for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Dingwu Zhang
- Shanghai Kangshi Food Science and Technology Co., Ltd., Shanghai 201103, China
| | - Xiaoyang Tang
- Shanghai Kangshi Food Science and Technology Co., Ltd., Shanghai 201103, China
| | - Pradeep K. Malakar
- College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China;
- International Research Centre for Food and Health, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| |
Collapse
|
4
|
Kumari CBN, Ambalavanan N, Kumar SR, Mahendra J, Sudhakar U. Microbiological evaluation of vitamin C rich acerola mediated silver and copperoxide nanogel in treatment of periodontitis with and without diabetes mellitus. J Oral Biol Craniofac Res 2024; 14:682-691. [PMID: 39381541 PMCID: PMC11460445 DOI: 10.1016/j.jobcr.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/16/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Aim Nanotechnology presents a promising approach for managing chronic periodontitis, a common oral disease characterized by gum inflammation and loss of supporting bone around teeth. This study aimed to evaluate the antimicrobial efficacy of acerola-mediated silver nanoparticles (AgNPs) gel and copper oxide nanoparticles (CuONPs) gel in periodontitis patients with and without diabetes. Materials and methods The antimicrobial efficacy of acerola-mediated AgNPs gel and CuONPs nanogel was assessed using the agar well diffusion technique, Minimum Inhibitory Concentration (MIC) assay, Minimum Bactericidal Concentration (MBC) analysis, time-kill curve assay, and cytoplasmic and protein leakage analysis from periodontitis patients with and without diabetes. Results The study found that acerola-mediated AgNPs gel demonstrated more consistent and effective antimicrobial activity against periodontitis, with lower MIC and MBC values compared to the CuONPs gel, across all tested concentrations. These results suggest that acerola-mediated AgNPs gel may be a more effective and targeted therapeutic agent for periodontal disease management. Conclusion The findings emphasize the importance of nanoparticle gel concentration in optimizing periodontal treatment outcomes. Acerola-mediated AgNPs gel, with its superior efficacy and consistency in bactericidal activity, shows significant potential for periodontal therapy. Clinical significance Innovative nanoparticles like copper and silver oxides exhibit antibacterial, anti-inflammatory, and antioxidant properties, making them promising agents for targeting periodontal pathogens. Acerola (Malpighia emarginata), with its high vitamin C content and antioxidant properties, is beneficial in mitigating oxidative stress associated with chronic periodontitis.
Collapse
Affiliation(s)
- C. Burnice Nalina Kumari
- Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - N. Ambalavanan
- Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - S. Rajesh Kumar
- Nanobiomedicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Jaideep Mahendra
- Department of Periodontics, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Uma Sudhakar
- Department of Periodontics, Thai Moogambigai Dental College and Hospital, Tamil Nadu, India
| |
Collapse
|
5
|
Zhang Z, Tran P, Rumi S, Bergfeld N, Reid TW, Abidi N. Alginate/organo-selenium composite hydrogel beads: Dye adsorption and bacterial deactivation. Int J Biol Macromol 2024; 280:135908. [PMID: 39313061 DOI: 10.1016/j.ijbiomac.2024.135908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Post-COVID-19, the risk and spread of germs, coupled with wastewater contamination, have become critical concerns. Wastewater contains waterborne bacteria and various contaminants like dye molecules, threatening water safety. Traditional adsorption methods address pollutant removal or pathogen inactivation separately, but a dual-action solution is increasingly essential. This study presents alginate/selenium composite hydrogel beads with the potential to simultaneously remove dyes and deactivating bacteria. Fabricated by dropping suspension droplets into a calcium ion bath, these beads were tested for dye adsorption and antibacterial efficacy. Beads with 50 wt% organo‑selenium demonstrated the highest methylene blue (MB) adsorption capacity and nearly 100 % deactivation efficiency against Pseudomonas aeruginosa, while those with 20 wt% showed no significant improvement. Mechanistic studies reveal that organo‑selenium induces stacking effects and reduces surface charges, enhancing MB adsorption and antibacterial performance. The alginate/organo‑selenium composite hydrogel beads offer a potential effective and sustainable solution for tackling the complex issue of wastewater pollutants.
Collapse
Affiliation(s)
- Zhen Zhang
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| | - Phat Tran
- Department of Ophthalmology and Visual Science, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Shaida Rumi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | | | - Ted W Reid
- Departments of Ophthalmology and Visual Sciences, and Molecular Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
6
|
Ao B, Jiang H, Cai X, Liu D, Tu J, Shi X, Wang Y, He F, Lv J, Li J, Hu Y, Xia X, Hou J. Synthesis of Tellurium Nanoparticles Using Moringa oleifera Extract, and Their Antibacterial and Antibiofilm Effects against Bacterial Pathogens. Microorganisms 2024; 12:1847. [PMID: 39338521 PMCID: PMC11434551 DOI: 10.3390/microorganisms12091847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Today, pathogenic microorganisms are increasingly developing resistance to conventional drugs, necessitating the exploration of alternative strategies. In addressing this challenge, nano-based antibacterial agents offer a promising avenue of research. In the present study, we used an extract of Moringa oleifera, a widely recognized edible and medicinal plant, to synthesize biogenetic tellurium nanoparticles (Bio-TeNPs). Transmission electron microscopy, scanning electron microscopy, and dynamic light scattering analyses revealed that the obtained Bio-TeNPs had diameters between 20 and 50 nm, and zeta potential values of 23.7 ± 3.3 mV. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the Bio-TeNPs consisted primarily of Te(0), along with some organic constituents. Remarkably, these Bio-TeNPs exhibited potent antibacterial activity against a spectrum of pathogens, including Escherichia coli, Klebsiella pneumoniae, Shigella dysenteriae, Salmonella typhimurium, Streptococcus pneumoniae, and Streptococcus agalactiae. In addition, findings from growth curve experiments, live/dead cell staining, and scanning electron microscopy observations of cell morphology demonstrated that Bio-TeNPs at a concentration of 0.07 mg/mL effectively disrupted E. coli and K. pneumoniae cells, leading to cell rupture or shrinkage. The biofilm inhibition rates of 0.7 mg/mL Bio-TeNPs against E. coli and K. pneumoniae reached 92% and 90%, respectively. In addition, 7 mg/mL Bio-TeNPs effectively eradicated E. coli from the surfaces of glass slides, with a 100% clearance rate. These outcomes underscore the exceptional antibacterial efficacy of Bio-TeNPs and highlight their potential as promising nanomaterials for combating bacterial infections.
Collapse
Affiliation(s)
- Bo Ao
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Honglin Jiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (H.J.); (F.H.); (J.L.)
| | - Xuan Cai
- Wuhan University, Wuhan 430060, China;
| | - Decheng Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Junming Tu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Xiaoshan Shi
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Yanxiang Wang
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Fei He
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (H.J.); (F.H.); (J.L.)
| | - Jing Lv
- Hubei Provincial Center for Disease Control and Prevention, Wuhan 430079, China; (H.J.); (F.H.); (J.L.)
| | - Jingjing Li
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi 435002, China; (B.A.); (D.L.); (J.T.); (X.S.); (Y.W.); (J.L.); (Y.H.)
| |
Collapse
|
7
|
Gokhale KM, Patravale V, Pingale R, Pandey P, Vavilala SL. Se-functionalized ZIF-8 nanoparticles: synthesis, characterization and disruption of biofilms and quorum sensing in Serratia marcescens. Biomed Mater 2024; 19:055020. [PMID: 39025122 DOI: 10.1088/1748-605x/ad6549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The majority of research on nanomaterials has been concentrated on metal nanoparticles since they are easily made and manipulated. Nanomaterials have shown a wide range of applications in biology. Nevertheless, their bioactivity declines due to their extreme susceptibility to and novel Se@ZIF-8 by chemical method. The sizes and morphologies of Se (0) and Se@ZIFchemical and physical stimuli. The goal of encapsulating these nanomaterials in a matrix is gradually being pursued, which boosts their affordability, stability, and usability. Metal-organic frameworks, often known as MOFs, have the potential to be the best platforms for encapsulating metal nanoparticles due to their well-defined frameworks, persistent porosity, and flexibility in modification. In this investigation, we report the synthesis and optimization of polyvinylpyrrolidone-stabilized Se(0) nanoparticles -8 were affected by the ratios of Se/Zn2+and [hmim]/Zn2+used. The optimized Se@ZIF-8 nanoparticles exhibited a particle size and zeta potential of 319 nm and -34 mv respectively. Transmission electron microscopy displayed spherical morphology for Se(0) nanoparticles, whereas the surface morphology of novel Se@ZIF-8 nanoparticles was drastically changed to hexagonal shaped structures with smooth surface morphologies in scanning electron microscopy (SEM). The DTA, TG/DTG, XRD analysis confirmed the presence of novel Se incorporated ZIF-8 nanoparticulate framework. The synthesized novel Se@ZIF-8 nanoparticles showed efficient antibacterial activity as evidenced by low MIC values. Interestingly, these Se@ZIF-8 NPs not only inhibited biofilm formation inS. marcescens,but also effectively eradicated mature biofilms by degrading the eDNA of the EPS layer. It was validated by confocal laser scanning microscopy and SEM analysis. It was observed that Se@ZIF-8 targeted the Quroum Sensing pathway and reduced its associated virulence factors production. This work opens up a different approach of Se@ZIF-8 nanoparticles as novel antibiotics to treat biofilm-associated infections caused byS. marcescensand offer a solution for antimicrobial resistance.
Collapse
Affiliation(s)
- Kunal M Gokhale
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle, Mumbai 400056, India
| | - Vandana Patravale
- Institute of Chemical Technology, Department of Pharm. Sciences and Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, India
| | - Rutuja Pingale
- Dr. L. H. Hiranandani College of Pharmacy, Ulhasnagar 421003, India
| | - Pooja Pandey
- School of Biological Sciences, UM DAE Centre for Excellence in basic Sciences, Mumbai 400098, India
| | - Sirisha L Vavilala
- School of Biological Sciences, UM DAE Centre for Excellence in basic Sciences, Mumbai 400098, India
| |
Collapse
|
8
|
Satpathy S, Panigrahi LL, Samal P, Sahoo KK, Arakha M. Biogenic synthesis of selenium nanoparticles from Nyctanthes arbor-tristis L. and evaluation of their antimicrobial, antioxidant and photocatalytic efficacy. Heliyon 2024; 10:e32499. [PMID: 39183842 PMCID: PMC11341326 DOI: 10.1016/j.heliyon.2024.e32499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 08/27/2024] Open
Abstract
Biogenic synthesis of nanoparticles has been established as an environmentally benign and sustainable approach. This study emphasizes biosynthesis of selenium nanoparticles (SeNPs) utilizing leaf extract of Nyctanthes arbor-tritis L., well known for its abundant bioactive compounds. Various analytical techniques were employed for characterization of synthesized SeNPs. X-ray diffraction (XRD) spectroscopy confirmed the crystalline structure and revealed the average crystalline size of SeNPs to be 44.57 nm. Additionally, UV-Vis spectroscopy confirmed successful synthesis of SeNPs by validating the surface plasmon resonance (SPR) properties of SeNPs. FTIR analysis data revealed different bonds and their corresponding functional groups responsible for the synthesis and stability of synthesized SeNPs. DLS and zeta analysis revealed that 116.5 nm sized SeNPs were stable in nature. Furthermore, field emission scanning electron microscopy (FE-SEM) validated the spherical morphology of SeNPs with a size range of 60-80 nm. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) determined the concentration of SeNPs in the obtained colloidal solution. Antioxidant activity of synthesized SeNPs was evaluated employing DPPH and H2O2 assay, revealed that the synthesized SeNPs were effective antioxidant agent. Additionally, antimicrobial potential was evaluated against a panel of Gram-positive and Gram-negative bacteria and found to be effective at higher concentration of SeNPs. SeNPs also exhibited strong anti-biofilm activity while evaluated against various biofilm producing bacteria like Escherichia coli , Staphylococcus epidermidis and Klebsiella pneumonia. The cytotoxicity of the bio-synthesized SeNPs was evaluated against HEK 293 cell line, exhibited minimal toxicity even at concentration 100 μg/mL with 65% viable cells. SeNPs has also been evaluated for dye degradation which has indicated excellent photocatalytic activity of synthesized SeNPs. The experimental data obtained altogether demonstrated that synthesized SeNPs exhibited significant antimicrobial and anti-biofilm activity against various pathogens, and also showed significant antioxidant and photocatalytic efficiency.
Collapse
Affiliation(s)
- Siddharth Satpathy
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Lipsa Leena Panigrahi
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Pallavi Samal
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Kirti Kanta Sahoo
- School of Civil Engineering, Kalinga Institute of Industrial Technology Univ., Bhubaneswar, Odisha, 751024, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
9
|
Sun M, Wang L, Zhuo Y, Xu S, Liu H, Jiang X, Lu Z, Wang X, Wang Y, Yue G, Feng B, Rao H, Wu D. Multi-Enzyme Activity of MIL-101 (Fe)-Derived Cascade Nano-Enzymes for Antitumor and Antimicrobial Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309593. [PMID: 38126566 DOI: 10.1002/smll.202309593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Indexed: 12/23/2023]
Abstract
The clinical application of oncology therapy is hampered by high glutathione concentrations, hypoxia, and inefficient activation of cell death mechanisms in cancer cells. In this study, Fe and Mo bimetallic sulfide nanomaterial (FeS2@MoS2) based on metal-organic framework structure is rationally prepared with peroxidase (POD)-, catalase (CAT)-, superoxide dismutase (SOD)-like activities and glutathione depletion ability, which can confer versatility for treating tumors and mending wounds. In the lesion area, FeS2@MoS2 with SOD-like activity can facilitate the transformation of superoxide anions (O2 -) to hydrogen peroxide (H2O2), and then the resulting H2O2 serves as a substrate for the Fenton reaction with FMS to produce highly toxic hydroxyl radicals (∙OH). Simultaneously, FeS2@MoS2 has an ability to deplete glutathione (GSH) and catalyze the decomposition of nicotinamide adenine dinucleotide phosphate (NADPH) to curb the regeneration of GSH from the source. Thus it can realize effective tumor elimination through synergistic apoptosis-ferroptosis strategy. Based on the alteration of the H2O2 system, free radical production, glutathione depletion and the alleviation of hypoxia in the tumor microenvironment, FeS2@MoS2 NPS can not only significantly inhibit tumors in vivo and in vitro, but also inhibit multidrug-resistant bacteria and hasten wound healing. It may open the door to the development of cascade nanoplatforms for effective tumor treatment and overcoming wound infection.
Collapse
Affiliation(s)
- Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, P. R. China
| | - Liling Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, P. R. China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Hehe Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, P. R. China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, P. R. China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, P. R. China
| | - Guizhou Yue
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, P. R. China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an, 625014, P. R. China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| |
Collapse
|
10
|
Satpathy S, Panigrahi LL, Arakha M. The Role of Selenium Nanoparticles in Addressing Diabetic Complications: A Comprehensive Study. Curr Top Med Chem 2024; 24:1327-1342. [PMID: 38561614 DOI: 10.2174/0115680266299494240326083936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Diabetes, as an emerging epidemic, has put forward a significant spotlight on the evolving population worldwide grounded upon the remarkable affliction of healthcare along with economical conflict. Various studies suggested that, in modern society, lack of maintenance of a healthy life style leads to the occurrence of diabetes as insulin resistant, later having a damaging effect on the pancreatic β-cells, suggesting various complications. Furthermore, diabetes management is controversial owing to different opinions based on the prevention of complications. For this purpose, nanostructured materials (NSM) like selenium nanoparticles (SeNPs) have proved their efficiency in the therapeutic management of such serious diseases. This review offers an in- -depth idea regarding the pathophysiology, diagnosis and various conventional therapeutics of type 1 and type 2 diabetes, shedding light on Diabetic Nephropathy (DN), a case study of type 1 diabetes. Moreover, this review provides an exhaustive study by highlighting the economic and healthcare burdens associated with diabetes along with the controversies associated with conventional therapeutic management and the promising role of NSM like selenium nanoparticles (SeNPs), as a novel weapon for encountering such fatal diseases.
Collapse
Affiliation(s)
- Siddharth Satpathy
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Lipsa Leena Panigrahi
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| | - Manoranjan Arakha
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India
| |
Collapse
|
11
|
Blinova A, Blinov A, Kravtsov A, Nagdalian A, Rekhman Z, Gvozdenko A, Kolodkin M, Filippov D, Askerova A, Golik A, Serov A, Shariati MA, Alharbi NS, Kadaikunnan S, Thiruvengadam M. Synthesis, Characterization and Potential Antimicrobial Activity of Selenium Nanoparticles Stabilized with Cetyltrimethylammonium Chloride. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3128. [PMID: 38133025 PMCID: PMC10746028 DOI: 10.3390/nano13243128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Selenium nanoparticles (Se NPs) have a number of unique properties that determine the use of the resulting nanomaterials in various fields. The focus of this paper is the stabilization of Se NPs with cetyltrimethylammonium chloride (CTAC). Se NPs were obtained by chemical reduction in an aqueous medium. The influence of the concentration of precursors and synthesis conditions on the size of Se NPs and the process of micelle formation was established. Transmission electron microscopy was used to study the morphology of Se NPs. The influence of the pH of the medium and the concentration of ions in the sol on the stability of Se micelles was studied. According to the results of this study, the concentration of positively charged ions has a greater effect on the particle size in the positive Se NPs sol than in the negative Se NPs sol. The potential antibacterial and fungicidal properties of the samples were studied on Escherichia coli, Micrococcus luteus and Mucor. Concentrations of Se NPs stabilized with CTAC with potential bactericidal and fungicidal effects were discovered. Considering the revealed potential antimicrobial activity, the synthesized Se NPs-CTAC molecular complex can be further studied and applied in the development of veterinary drugs, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Anastasiya Blinova
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Andrey Blinov
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Alexander Kravtsov
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Andrey Nagdalian
- Laboratory of Food and Industrial Biotechnology, North-Caucasus Federal University, 355017 Stavropol, Russia;
| | - Zafar Rekhman
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Alexey Gvozdenko
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Maksim Kolodkin
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Dionis Filippov
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Alina Askerova
- Laboratory of Food and Industrial Biotechnology, North-Caucasus Federal University, 355017 Stavropol, Russia;
| | - Alexey Golik
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Alexander Serov
- Chemical and Pharmaceutical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia;
| | - Mohammad Ali Shariati
- Scientific Department, Semey Branch of the Kazakh Research Institute of Processing and Food Industry, Gagarin Avenue 238G, Almaty 050060, Kazakhstan;
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.K.)
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.K.)
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
12
|
Serov DA, Khabatova VV, Vodeneev V, Li R, Gudkov SV. A Review of the Antibacterial, Fungicidal and Antiviral Properties of Selenium Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5363. [PMID: 37570068 PMCID: PMC10420033 DOI: 10.3390/ma16155363] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
The resistance of microorganisms to antimicrobial drugs is an important problem worldwide. To solve this problem, active searches for antimicrobial components, approaches and therapies are being carried out. Selenium nanoparticles have high potential for antimicrobial activity. The relevance of their application is indisputable, which can be noted due to the significant increase in publications on the topic over the past decade. This review of research publications aims to provide the reader with up-to-date information on the antimicrobial properties of selenium nanoparticles, including susceptible microorganisms, the mechanisms of action of nanoparticles on bacteria and the effect of nanoparticle properties on their antimicrobial activity. This review describes the most complete information on the antiviral, antibacterial and antifungal effects of selenium nanoparticles.
Collapse
Affiliation(s)
- Dmitry A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Venera V. Khabatova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
| | - Vladimir Vodeneev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou 215123, China;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilove St. 38, 119991 Moscow, Russia; (D.A.S.); (V.V.K.)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin av. 23, 603105 Nizhny Novgorod, Russia;
| |
Collapse
|