1
|
Bui AT, Cox SJ. Revisiting the Green-Kubo relation for friction in nanofluidics. J Chem Phys 2024; 161:201102. [PMID: 39601286 DOI: 10.1063/5.0238363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
A central aim of statistical mechanics is to establish connections between a system's microscopic fluctuations and its macroscopic response to a perturbation. For non-equilibrium transport properties, this amounts to establishing Green-Kubo (GK) relationships. In hydrodynamics, relating such GK expressions for liquid-solid friction to macroscopic slip boundary conditions has remained a long-standing problem due to two challenges: (i) The GK running integral of the force autocorrelation function decays to zero rather than reaching a well-defined plateau value, and (ii) debates persist on whether such a transport coefficient measures an intrinsic interfacial friction or an effective friction in the system. Inspired by ideas from the coarse-graining community, we derive a GK relation for liquid-solid friction where the force autocorrelation is sampled with a constraint of momentum conservation in the liquid. Our expression does not suffer from the "plateau problem" and unambiguously measures an effective friction coefficient, in an analogous manner to Stokes' law. We further establish a link between the derived friction coefficient and the hydrodynamic slip length, enabling a straightforward assessment of continuum hydrodynamics across length scales. We find that continuum hydrodynamics describes the simulation results quantitatively for confinement length scales all the way down to 1 nm. Our approach amounts to a straightforward modification to the present standard method of quantifying interfacial friction from molecular simulations, making possible a sensible comparison between surfaces of vastly different slippage.
Collapse
Affiliation(s)
- Anna T Bui
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Stephen J Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
2
|
Coello Escalante L, Limmer DT. Microscopic Origin of Twist-Dependent Electron Transfer Rate in Bilayer Graphene. NANO LETTERS 2024; 24:14868-14874. [PMID: 39527706 DOI: 10.1021/acs.nanolett.4c04690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Using molecular simulation and continuum dielectric theory, we consider how electrochemical kinetics are modulated by the twist angle in bilayer graphene electrodes. By establishing a connection between the twist angle and the screening length of charge carriers within the electrode, we investigate how tunable metallicity modifies the statistics of the electron transfer energy gap. Constant potential molecular simulations show that the activation free energy for electron transfer increases with screening length, leading to a non-monotonic dependence on the twist angle. The twist angle alters the density of states, tuning the number of thermally accessible channels for electron transfer and the reorganization energy by affecting the stability of the vertically excited state through attenuated image charge interactions. Understanding these effects allows us to express the Marcus rate of interfacial electron transfer as a function of the twist angle in a manner consistent with experimental observations.
Collapse
Affiliation(s)
| | - David T Limmer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
- MSD, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- CSD, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Calegari Andrade MF, Aluru NR, Pham TA. Nonlinear Effects of Hydrophobic Confinement on the Electronic Structure and Dielectric Response of Water. J Phys Chem Lett 2024; 15:6872-6879. [PMID: 38934582 DOI: 10.1021/acs.jpclett.4c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Fundamental studies of the dielectrics of confined water are critical to understand the ion transport across biological and synthetic nanochannels. The relevance of these fundamental studies, however, surmounts the difficulty of probing water's dielectric constant as a function of a fine variation in confinement. In this work, we explore the computational efficiency of machine learning potentials to derive the confinement effects on the dielectric constant, polarization, and dipole moment of water. Our simulations predict an enhancement of the axial dielectric constant of water under extreme confinement, arising from either the formation of ferroelectric structures of ordered water or larger dipole fluctuations facilitated by the disruption of water's H-bond network. Our study highlights the impact of hydrophobic nanoconfinement on the dielectric constant and on the ionic and electronic structure of water molecules, pointing to the importance of geometric flexibility and electronic polarizability to properly model confinement effects on water.
Collapse
Affiliation(s)
- Marcos F Calegari Andrade
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - N R Aluru
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tuan Anh Pham
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
4
|
Limmer DT, Götz AW, Bertram TH, Nathanson GM. Molecular Insights into Chemical Reactions at Aqueous Aerosol Interfaces. Annu Rev Phys Chem 2024; 75:111-135. [PMID: 38360527 DOI: 10.1146/annurev-physchem-083122-121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.
Collapse
Affiliation(s)
- David T Limmer
- Department of Chemistry, University of California, Berkeley, California, USA;
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Kavli Energy NanoScience Institute, Berkeley, California, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California, USA;
| | - Timothy H Bertram
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
| |
Collapse
|
5
|
Pireddu G, Fairchild CJ, Niblett SP, Cox SJ, Rotenberg B. Impedance of nanocapacitors from molecular simulations to understand the dynamics of confined electrolytes. Proc Natl Acad Sci U S A 2024; 121:e2318157121. [PMID: 38662549 PMCID: PMC11067016 DOI: 10.1073/pnas.2318157121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Nanoelectrochemical devices have become a promising candidate technology across various applications, including sensing and energy storage, and provide new platforms for studying fundamental properties of electrode/electrolyte interfaces. In this work, we employ constant-potential molecular dynamics simulations to investigate the impedance of gold-aqueous electrolyte nanocapacitors, exploiting a recently introduced fluctuation-dissipation relation. In particular, we relate the frequency-dependent impedance of these nanocapacitors to the complex conductivity of the bulk electrolyte in different regimes, and use this connection to design simple but accurate equivalent circuit models. We show that the electrode/electrolyte interfacial contribution is essentially capacitive and that the electrolyte response is bulk-like even when the interelectrode distance is only a few nanometers, provided that the latter is sufficiently large compared to the Debye screening length. We extensively compare our simulation results with spectroscopy experiments and predictions from analytical theories. In contrast to experiments, direct access in simulations to the ionic and solvent contributions to the polarization allows us to highlight their significant and persistent anticorrelation and to investigate the microscopic origin of the timescales observed in the impedance spectrum. This work opens avenues for the molecular interpretation of impedance measurements, and offers valuable contributions for future developments of accurate coarse-grained representations of confined electrolytes.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, ParisF-75005, France
| | - Connie J. Fairchild
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Samuel P. Niblett
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Stephen J. Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Benjamin Rotenberg
- Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, CNRS, Sorbonne Université, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), CNRS, Sorbonne Université, ParisF-75005, France
- Réseau sur le Stockage Electrochimique de l’Energie, Fédération de Recherche CNRS 3459, Amiens Cedex80039, France
| |
Collapse
|
6
|
Coquinot B, Becker M, Netz RR, Bocquet L, Kavokine N. Collective modes and quantum effects in two-dimensional nanofluidic channels. Faraday Discuss 2024; 249:162-180. [PMID: 37779420 PMCID: PMC10845119 DOI: 10.1039/d3fd00115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 10/03/2023]
Abstract
Nanoscale fluid transport is typically pictured in terms of atomic-scale dynamics, as is natural in the real-space framework of molecular simulations. An alternative Fourier-space picture, that involves the collective charge fluctuation modes of both the liquid and the confining wall, has recently been successful at predicting new nanofluidic phenomena such as quantum friction and near-field heat transfer, that rely on the coupling of those fluctuations. Here, we study the charge fluctuation modes of a two-dimensional (planar) nanofluidic channel. Introducing confined response functions that generalize the notion of surface response function, we show that the channel walls exhibit coupled plasmon modes as soon as the confinement is comparable to the plasmon wavelength. Conversely, the water fluctuations remain remarkably bulk-like, with significant confinement effects arising only when the wall spacing is reduced to 7 Å. We apply the confined response formalism to predict the dependence of the solid-water quantum friction and thermal boundary conductance on channel width for model channel wall materials. Our results provide a general framework for Coulomb interactions of fluctuating matter under nanoscale confinement.
Collapse
Affiliation(s)
- Baptiste Coquinot
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA
| | - Maximilian Becker
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Lydéric Bocquet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Nikita Kavokine
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA
| |
Collapse
|
7
|
Dufils T, Schran C, Chen J, Geim AK, Fumagalli L, Michaelides A. Origin of dielectric polarization suppression in confined water from first principles. Chem Sci 2024; 15:516-527. [PMID: 38179530 PMCID: PMC10763014 DOI: 10.1039/d3sc04740g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
It has long been known that the dielectric constant of confined water should be different from that in bulk. Recent experiments have shown that it is vanishingly small, however the origin of the phenomenon remains unclear. Here we used ab initio molecular dynamics simulations (AIMD) and AIMD-trained machine-learning potentials to understand water's structure and electronic properties underpinning this effect. For the graphene and hexagonal boron-nitride substrates considered, we find that it originates in the spontaneous anti-parallel alignment of the water dipoles in the first two water layers near the solid interface. The interfacial layers exhibit net ferroelectric ordering, resulting in an overall anti-ferroelectric arrangement of confined water. Together with constrained hydrogen-bonding orientations, this leads to much reduced out-of-plane polarization. Furthermore, we directly contrast AIMD and simple classical force-field simulations, revealing important differences. This work offers insight into a property of water that is critical in modulating surface forces, the electric-double-layer formation and molecular solvation, and shows a way to compute it.
Collapse
Affiliation(s)
- T Dufils
- Department of Physics and Astronomy, University of Manchester Manchester M13 9PL UK
- National Graphene Institute, University of Manchester Manchester M13 9PL UK
| | - C Schran
- Cavendish Laboratory, Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Lennard-Jones Centre, University of Cambridge Trinity Ln Cambridge CB2 1TN UK
| | - J Chen
- School of Physics, Peking University Beijing 100871 China
| | - A K Geim
- Department of Physics and Astronomy, University of Manchester Manchester M13 9PL UK
- National Graphene Institute, University of Manchester Manchester M13 9PL UK
| | - L Fumagalli
- Department of Physics and Astronomy, University of Manchester Manchester M13 9PL UK
- National Graphene Institute, University of Manchester Manchester M13 9PL UK
| | - A Michaelides
- Lennard-Jones Centre, University of Cambridge Trinity Ln Cambridge CB2 1TN UK
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
8
|
Borgis D, Laage D, Belloni L, Jeanmairet G. Dielectric response of confined water films from a classical density functional theory perspective. Chem Sci 2023; 14:11141-11150. [PMID: 37860645 PMCID: PMC10583706 DOI: 10.1039/d3sc01267k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 10/21/2023] Open
Abstract
We re-examine the problem of the dielectric response of highly polar liquids such as water in confinement between two walls using simple two-variable density functional theory involving number and polarisation densities. In the longitudinal polarisation case where a perturbing field is applied perpendicularly to the walls, we show that the notion of the local dielectric constant, although ill-defined at a microscopic level, makes sense when coarse-graining over the typical size of a particle is introduced. The approach makes it possible to study the effective dielectric response of thin liquid films of various thicknesses in connection with the recent experiments of Fumagalli et al., [Science, 2018, 360, 1339-1342], and to discuss the notion of the interfacial dielectric constant. We argue that the observed properties as a function of slab dimensions, in particular the very low dielectric constants of the order of 2-3 measured for thin slabs of ∼1 nm thickness do not highlight any special properties of water but can be recovered for a generic polar solvent having similar particle size and the same high dielectric constant. Regarding the transverse polarisation case where the perturbing field is parallel to the walls, the associated effective dielectric constant as a function of slab dimensions reaches bulk-like values at much shorter widths than in the longitudinal case. In both cases, we find an oscillatory behaviour for slab thicknesses in the one nanometer range due to packing effects.
Collapse
Affiliation(s)
- Daniel Borgis
- Maison de la Simulation, CNRS-CEA-Université Paris-Saclay UAR 3441 91191 Gif-sur-Yvette France
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Damien Laage
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Luc Belloni
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette France
| | - Guillaume Jeanmairet
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX F-75005 Paris France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), FR CNRS 3459 80039 Amiens Cedex France
| |
Collapse
|
9
|
Devlin SW, Jamnuch S, Xu Q, Chen AA, Qian J, Pascal TA, Saykally RJ. Agglomeration Drives the Reversed Fractionation of Aqueous Carbonate and Bicarbonate at the Air-Water Interface. J Am Chem Soc 2023; 145:22384-22393. [PMID: 37774115 DOI: 10.1021/jacs.3c05093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
In the course of our investigations of the adsorption of ions to the air-water interface, we previously reported the surprising result that doubly charged carbonate anions exhibit a stronger surface affinity than singly charged bicarbonate anions. In contrast to monovalent, weakly hydrated anions, which generally show enhanced concentrations in the interfacial region, multivalent (and strongly hydrated) anions are expected to show a much weaker surface propensity. In the present work, we use resonantly enhanced deep-UV second-harmonic generation spectroscopy to measure the Gibbs free energy of adsorption of both carbonate (CO32-) and bicarbonate (HCO3-) anions to the air-water interface. Contrasting the predictions of classical electrostatic theory and in support of our previous findings from X-ray photoelectron spectroscopy, we find that carbonate anions do indeed exhibit much stronger surface affinity than do the bicarbonate anions. Extensive computer simulations reveal that strong ion pairing of CO32- with the Na+ countercation in the interfacial region results in the formation of near-neutral agglomerate clusters, consistent with a theory of interfacial ion adsorption based on hydration free energy and capillary waves. Simulated X-ray photoelectron spectra predict a 1 eV shift in the carbonate spectra compared to that of bicarbonate, further confirming our experiments. These findings not only advance our fundamental understanding of ion adsorption chemistry but also impact important practical processes such as ocean acidification, sea-spray aerosol chemistry, and mammalian respiration physiology.
Collapse
Affiliation(s)
- Shane W Devlin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Sasawat Jamnuch
- ATLAS Materials Science Laboratory, Department of Nano Engineering and Chemical Engineering, University of California, San Diego, La Jolla, California 92023, United States
| | - Qiang Xu
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Amanda A Chen
- ATLAS Materials Science Laboratory, Department of Nano Engineering and Chemical Engineering, University of California, San Diego, La Jolla, California 92023, United States
| | - Jin Qian
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Tod A Pascal
- ATLAS Materials Science Laboratory, Department of Nano Engineering and Chemical Engineering, University of California, San Diego, La Jolla, California 92023, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92023, United States
- Sustainable Power and Energy Center, University of California San Diego, La Jolla, California 92023, United States
| | - Richard J Saykally
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Hoang Ngoc Minh T, Kim J, Pireddu G, Chubak I, Nair S, Rotenberg B. Electrical noise in electrolytes: a theoretical perspective. Faraday Discuss 2023; 246:198-224. [PMID: 37409620 DOI: 10.1039/d3fd00026e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Seemingly unrelated experiments such as electrolyte transport through nanotubes, nano-scale electrochemistry, NMR relaxometry and surface force balance measurements, all probe electrical fluctuations: of the electric current, the charge and polarization, the field gradient (for quadrupolar nuclei) and the coupled mass/charge densities. The fluctuations of such various observables arise from the same underlying microscopic dynamics of the ions and solvent molecules. In principle, the relevant length and time scales of these dynamics are encoded in the dynamic structure factors. However, modelling the latter for frequencies and wavevectors spanning many orders of magnitude remains a great challenge to interpret the experiments in terms of physical processes such as solvation dynamics, diffusion, electrostatic and hydrodynamic interactions between ions, interactions with solid surfaces, etc. Here, we highlight the central role of the charge-charge dynamic structure factor in the fluctuations of electrical observables in electrolytes and offer a unifying perspective over a variety of complementary experiments. We further analyze this quantity in the special case of an aqueous NaCl electrolyte, using simulations with explicit ions and an explicit or implicit solvent. We discuss the ability of the standard Poisson-Nernst-Planck theory to capture the simulation results, and how the predictions can be improved. We finally discuss the contributions of ions and water to the total charge fluctuations. This work illustrates an ongoing effort towards a comprehensive understanding of electrical fluctuations in bulk and confined electrolytes, in order to enable experimentalists to decipher the microscopic properties encoded in the measured electrical noise.
Collapse
Affiliation(s)
- Thê Hoang Ngoc Minh
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Jeongmin Kim
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Giovanni Pireddu
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Iurii Chubak
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Swetha Nair
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
11
|
Pireddu G, Rotenberg B. Frequency-Dependent Impedance of Nanocapacitors from Electrode Charge Fluctuations as a Probe of Electrolyte Dynamics. PHYSICAL REVIEW LETTERS 2023; 130:098001. [PMID: 36930930 DOI: 10.1103/physrevlett.130.098001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
The frequency-dependent impedance is a fundamental property of electrical components. We show that it can be determined from the equilibrium dynamical fluctuations of the electrode charge in constant-potential molecular simulations, extending in particular a fluctuation-dissipation relation for the capacitance recovered in the low-frequency limit and provide an illustration on water-gold nanocapacitors. This Letter opens the way to the interpretation of electrochemical impedance measurements in terms of microscopic mechanisms, directly from the dynamics of the electrolyte, or indirectly via equivalent circuit models as in experiments.
Collapse
Affiliation(s)
- Giovanni Pireddu
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
| | - Benjamin Rotenberg
- Sorbonne Université, CNRS, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, F-75005 Paris, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France
| |
Collapse
|
12
|
Cox SJ. A theory for the stabilization of polar crystal surfaces by a liquid environment. J Chem Phys 2022; 157:094701. [PMID: 36075740 DOI: 10.1063/5.0097531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polar crystal surfaces play an important role in the functionality of many materials and have been studied extensively over many decades. In this article, a theoretical framework is presented that extends existing theories by placing the surrounding solution environment on an equal footing with the crystal itself; this is advantageous, e.g., when considering processes such as crystal growth from solution. By considering the polar crystal as a stack of parallel plate capacitors immersed in a solution environment, the equilibrium adsorbed surface charge density is derived by minimizing the free energy of the system. In analogy to the well-known diverging surface energy of a polar crystal surface at zero temperature, for a crystal in solution it is shown that the "polar catastrophe" manifests as a diverging free energy cost to perturb the system from equilibrium. Going further than existing theories, the present formulation predicts that fluctuations in the adsorbed surface charge density become increasingly suppressed with increasing crystal thickness. We also show how, in the slab geometry often employed in both theoretical and computational studies of interfaces, an electric displacement field emerges as an electrostatic boundary condition, the origins of which are rooted in the slab geometry itself, rather than the use of periodic boundary conditions. This aspect of the work provides a firmer theoretical basis for the recent observation that standard "slab corrections" fail to correctly describe, even qualitatively, polar crystal surfaces in solution.
Collapse
Affiliation(s)
- Stephen J Cox
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|