1
|
Atakhanov AA, Ashurov NS, Kuzieva MM, Mamadiyorov BN, Ergashev DJ, Rashidova SS, Khutoryanskiy VV. Novel Acryloylated and Methacryloylated Nanocellulose Derivatives with Improved Mucoadhesive Properties. Macromol Biosci 2024; 24:e2400183. [PMID: 39177149 DOI: 10.1002/mabi.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/24/2024] [Indexed: 08/24/2024]
Abstract
In this work, three nanocellulose derivatives are synthesized with the aim of preparing new mucoadhesive materials. Nanocellulose is reacted with glycidyl methacrylate in dimethylsulphoxide, and with acryloyl and methacryloyl chloride in dimethylacetamide in the presence of 4-(N,N-dimethylamino)pyridine as a catalyst. These reactions are carried out under heterogeneous conditions, and the reaction products are characterized using various spectroscopic techniques, X-ray diffraction, atomic force microscopy, and thermogravimetric analysis. The Fourier-transform infrared spectra showed all the characteristic absorption bands typical for cellulose and also new peaks at 1720 cm-1 for the carbonyl group (C═O) and 1639, 812 cm-1 for the double bond (C═C). It is established that the crystal structure of the nanocellulose is slightly changed with derivatisation and the thermal stability of these derivatives increased. Mucoadhesive properties of nanocellulose and its derivatives is evaluated using the tensile test, rotating basket method, and fluorescence flow-through method. The retention of these polymers is evaluated on sheep oral mucosal tissue ex vivo using artificial saliva. Test results demonstrated that the new derivatives of nanocellulose have improved mucoadhesive properties compared to the parent nanocellulose.
Collapse
Affiliation(s)
- Abdumutolib A Atakhanov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Science, A. Kadiriy str., 7b, Tashkent, 100128, Uzbekistan
| | - Nurbek Sh Ashurov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Science, A. Kadiriy str., 7b, Tashkent, 100128, Uzbekistan
| | - Makhliyo M Kuzieva
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Science, A. Kadiriy str., 7b, Tashkent, 100128, Uzbekistan
| | - Burhon N Mamadiyorov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Science, A. Kadiriy str., 7b, Tashkent, 100128, Uzbekistan
| | - Doniyor J Ergashev
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Science, A. Kadiriy str., 7b, Tashkent, 100128, Uzbekistan
| | - Sayyora Sh Rashidova
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Science, A. Kadiriy str., 7b, Tashkent, 100128, Uzbekistan
| | | |
Collapse
|
2
|
Kolawole OM, Khutoryanskiy VV. Potential bladder cancer therapeutic delivery systems: a recent update. Expert Opin Drug Deliv 2024; 21:1311-1329. [PMID: 39178039 DOI: 10.1080/17425247.2024.2396958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024]
Abstract
INTRODUCTION Bladder Cancer is one of the most expensive cancers to treat due to its high cost of therapy as well as the surveillance expenses incurred to prevent disease recurrence and progression. Thus, there is a strong need to develop safe, efficacious drug formulations with controlled drug release profiles and tumor-targeting potential, for improved therapeutic outcomes of bladder cancer patients. AREAS COVERED This review aims to provide an overview of drug formulations that have been studied for potential bladder cancer treatment in the last decade; highlight recent trends in bladder cancer treatment; mention ongoing clinical trials on bladder cancer chemotherapy; detail recently FDA-approved drug products for bladder cancer treatment and identify constraints that have prevented the translation of promising drug formulations from the research laboratory to the clinics. EXPERT OPINION This work revealed that surface functionalization of particulate drug delivery systems and incorporating the nanoparticles into in situ gelling systems could facilitate controlled drug release for extended periods, and improve the prognosis of bladder cancer treatment. Future research directions could incorporate multiple drugs into the drug delivery systems to treat advanced stages of the disease. In addition, smart nanomaterials, including photothermal therapies, could be exploited to improve the therapeutic outcomes of bladder cancer patients.
Collapse
|
3
|
Fu M, Filippov SK, Williams AC, Khutoryanskiy VV. On the mucoadhesive properties of synthetic and natural polyampholytes. J Colloid Interface Sci 2024; 659:849-858. [PMID: 38218088 DOI: 10.1016/j.jcis.2023.12.176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
HYPOTHESIS The mucoadhesive characteristics of amphoteric polymers (also known as polyampholytes) can vary and are influenced by factors such as the solution's pH and its relative position against their isoelectric point (pHIEP). Whilst the literature contains numerous reports on mucoadhesive properties of either cationic or anionic polymers, very little is known about these characteristics for polyampholytes EXPERIMENTS: Here, two amphoteric polymers were synthesized by reaction of linear polyethylene imine (l-PEI) with succinic or phthalic anhydride and their mucoadhesive properties were compared to bovine serum albumin (BSA), selected as a natural polyampholyte. Interactions between these polymers and porcine gastric mucin were studied using turbidimetric titration and isothermal titration calorimetry across a wide range of pHs. Model tablets were designed, coated with these polymers and tested to evaluate their adhesion to porcine gastric mucosa at different pHs. Moreover, a retention study using fluorescein isothiocyanate (FITC)-labelled polyampholytes deposited onto mucosal surfaces was also conducted FINDINGS: All these studies indicated the importance of solution pH and its relative position against pHIEP in the mucoadhesive properties of polyampholytes. Both synthetic and natural polyampholytes exhibited strong interactions with mucin and good mucoadhesive properties at pH < pHIEP.
Collapse
Affiliation(s)
- Manfei Fu
- School of Pharmacy, University of Reading, Whiteknights, Post Office Box 224, Reading RG6 6AD, United Kingdom
| | - Sergey K Filippov
- DWI-Leibniz Institute for Interactive Materials e. V., Forckenbeckstraße 50 52074, Aachen, Germany
| | - Adrian C Williams
- School of Pharmacy, University of Reading, Whiteknights, Post Office Box 224, Reading RG6 6AD, United Kingdom
| | - Vitaliy V Khutoryanskiy
- School of Pharmacy, University of Reading, Whiteknights, Post Office Box 224, Reading RG6 6AD, United Kingdom.
| |
Collapse
|
4
|
Shatabayeva E, Kaldybekov DB, Ulmanova L, Zhaisanbayeva BA, Mun EA, Kenessova ZA, Kudaibergenov SE, Khutoryanskiy VV. Enhancing Mucoadhesive Properties of Gelatin through Chemical Modification with Unsaturated Anhydrides. Biomacromolecules 2024; 25:1612-1628. [PMID: 38319691 PMCID: PMC10934270 DOI: 10.1021/acs.biomac.3c01183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
Gelatin is a water-soluble natural polyampholyte with poor mucoadhesive properties. It has traditionally been used as a major ingredient in many pharmaceuticals, including soft and hard capsules, suppositories, tissue engineering, and regenerative medicine. The mucoadhesive properties of gelatin can be improved by modifying it through conjugation with specific adhesive unsaturated groups. In this study, gelatin was modified by reacting with crotonic, itaconic, and methacrylic anhydrides in varying molar ratios to yield crotonoylated-, itaconoylated-, and methacryloylated gelatins (abbreviated as Gel-CA, Gel-IA, and Gel-MA, respectively). The successful synthesis was confirmed using 1H NMR, FTIR spectroscopies, and colorimetric TNBSA assay. The effect of chemical modification on the isoelectric point was studied through viscosity and electrophoretic mobility measurements. The evolution of the storage (G') and loss (G'') moduli was employed to determine thermoreversible gelation points of modified and unmodified gelatins. The safety of modified gelatin derivatives was assessed with an in vivo slug mucosal irritation test (SMIT) and an in vitro MTT assay utilizing human pulmonary fibroblasts cell line. Two different model dosage forms, such as physical gels and spray-dried microparticles, were prepared and their mucoadhesive properties were evaluated using a flow-through technique with fluorescent detection and a tensile test with ex vivo porcine vaginal tissues and sheep nasal mucosa. Gelatins modified with unsaturated groups exhibited superior mucoadhesive properties compared to native gelatin. The enhanced ability of gelatin modified with these unsaturated functional groups is due to the formation of covalent bonds with cysteine-rich subdomains present in the mucin via thiol-ene click Michael-type addition reactions occurring under physiologically relevant conditions.
Collapse
Affiliation(s)
- Elvira
O. Shatabayeva
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, United Kingdom
- Department
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, 050040 Almaty, Kazakhstan
| | - Daulet B. Kaldybekov
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, United Kingdom
- Department
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, 050040 Almaty, Kazakhstan
- Institute
of Polymer Materials and Technology, 050019 Almaty, Kazakhstan
| | - Leila Ulmanova
- School
of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Balnur A. Zhaisanbayeva
- School
of Engineering and Digital Sciences, Nazarbayev
University, 010000 Astana, Kazakhstan
| | - Ellina A. Mun
- School
of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Zarina A. Kenessova
- Department
of Chemistry and Chemical Technology, Al-Farabi
Kazakh National University, 050040 Almaty, Kazakhstan
| | | | - Vitaliy V. Khutoryanskiy
- Reading
School of Pharmacy, University of Reading, Whiteknights, RG6 6DX Reading, United Kingdom
| |
Collapse
|
5
|
Hunter SJ, Abu Elella MH, Johnson EC, Taramova L, Brotherton EE, Armes SP, Khutoryanskiy VV, Smallridge MJ. Mucoadhesive pickering nanoemulsions via dynamic covalent chemistry. J Colloid Interface Sci 2023; 651:334-345. [PMID: 37544222 DOI: 10.1016/j.jcis.2023.07.162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/29/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
HYPOTHESIS Submicron oil droplets stabilized using aldehyde-functionalized nanoparticles should adhere to the primary amine groups present at the surface of sheep nasal mucosal tissue via Schiff base chemistry. EXPERIMENTS Well-defined sterically-stabilized diblock copolymer nanoparticles of 20 nm diameter were prepared in the form of concentrated aqueous dispersions via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) using a water-soluble methacrylic precursor bearing cis-diol groups. Some of these hydroxyl-functional nanoparticles were then selectively oxidized using an aqueous solution of sodium periodate to form a second batch of nanoparticles bearing pendent aldehyde groups within the steric stabilizer chains. Subjecting either hydroxyl- or aldehyde-functional nanoparticles to high-shear homogenization with a model oil (squalane) produced oil-in-water Pickering macroemulsions of 20-30 µm diameter. High-pressure microfluidization of such macroemulsions led to formation of the corresponding Pickering nanoemulsions with a mean droplet diameter of around 200 nm. Quartz crystal microbalance (QCM) experiments were used to examine adsorption of both nanoparticles and oil droplets onto a model planar substrate bearing primary amine groups, while a fluorescence microscopy-based mucoadhesion assay was developed to assess adsorption of the oil droplets onto sheep nasal mucosal tissue. FINDINGS Squalane droplets coated with aldehyde-functional nanoparticles adhered significantly more strongly to sheep nasal mucosal tissue than those coated with the corresponding hydroxyl-functional nanoparticles. This difference was attributed to the formation of surface imine bonds via Schiff base chemistry and was also observed for the two types of nanoparticles alone in QCM studies. Preliminary biocompatibility studies using planaria indicated only mild toxicity for these new mucoadhesive Pickering nanoemulsions, suggesting potential applications for the localized delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Saul J Hunter
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK
| | - Mahmoud H Abu Elella
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Edwin C Johnson
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK
| | - Laura Taramova
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Emma E Brotherton
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK.
| | | | | |
Collapse
|
6
|
Johnson EC, Varlas S, Norvilaite O, Neal TJ, Brotherton EE, Sanderson G, Leggett GJ, Armes SP. Adsorption of Aldehyde-Functional Diblock Copolymer Spheres onto Surface-Grafted Polymer Brushes via Dynamic Covalent Chemistry Enables Friction Modification. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6109-6122. [PMID: 37576584 PMCID: PMC10413866 DOI: 10.1021/acs.chemmater.3c01227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Dynamic covalent chemistry has been exploited to prepare numerous examples of adaptable polymeric materials that exhibit unique properties. Herein, the chemical adsorption of aldehyde-functional diblock copolymer spherical nanoparticles onto amine-functionalized surface-grafted polymer brushes via dynamic Schiff base chemistry is demonstrated. Initially, a series of cis-diol-functional sterically-stabilized spheres of 30-250 nm diameter were prepared via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization. The pendent cis-diol groups within the steric stabilizer chains of these precursor nanoparticles were then oxidized using sodium periodate to produce the corresponding aldehyde-functional spheres. Similarly, hydrophilic cis-diol-functionalized methacrylic brushes grafted from a planar silicon surface using activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) were selectively oxidized to generate the corresponding aldehyde-functional brushes. Ellipsometry and X-ray photoelectron spectroscopy were used to confirm brush oxidation, while scanning electron microscopy studies demonstrated that the nanoparticles did not adsorb onto a cis-diol-functional precursor brush. Subsequently, the aldehyde-functional brushes were treated with excess small-molecule diamine, and the resulting imine linkages were converted into secondary amine bonds via reductive amination. The resulting primary amine-functionalized brushes formed multiple dynamic imine bonds with the aldehyde-functional diblock copolymer spheres, leading to a mean surface coverage of approximately 0.33 on the upper brush layer surface, regardless of the nanoparticle size. Friction force microscopy studies of the resulting nanoparticle-decorated brushes enabled calculation of friction coefficients, which were compared to that measured for the bare aldehyde-functional brush. Friction coefficients were reasonably consistent across all surfaces except when particle size was comparable to the size of the probe tip. In this case, differences were ascribed to an increase in contact area between the tip and the brush-nanoparticle layer. This new model system enhances our understanding of nanoparticle adsorption onto hydrophilic brush layers.
Collapse
Affiliation(s)
- Edwin C. Johnson
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Spyridon Varlas
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Oleta Norvilaite
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Thomas J. Neal
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Emma E. Brotherton
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Graham J. Leggett
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
7
|
Brotherton EE, Josland D, György C, Johnson EC, Chan DH, Smallridge MJ, Armes SP. Histidine-Functionalized Diblock Copolymer Nanoparticles Exhibit Enhanced Adsorption onto Planar Stainless Steel. Macromol Rapid Commun 2023; 44:e2200903. [PMID: 36534428 PMCID: PMC11497266 DOI: 10.1002/marc.202200903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RAFT aqueous emulsion polymerization of isopropylideneglycerol monomethacrylate (IPGMA) is used to prepare a series of PGEO5MA46 -PIPGMAy nanoparticles, where PGEO5MA is a hydrophilic methacrylic steric stabilizer block bearing pendent cis-diol groups. TEM studies confirm a spherical morphology while dynamic light scattering (DLS) analysis indicated that the z-average particle diameter can be adjusted by varying the target degree of polymerization for the core-forming PIPGMA block. Periodate oxidation is used to convert the cis-diol groups on PGEO5MA46 -PIPGMA500 and PGEO5MA46 -PIPGMA1000 nanoparticles into the analogous aldehyde-functionalized nanoparticles, which are then reacted with histidine via reductive amination. In each case, the extent of functionalization is more than 99% as determined by 1 H NMR spectroscopy. Aqueous electrophoresis studies indicate that such derivatization converts initially neutral nanoparticles into zwitterionic nanoparticles with an isoelectric point at pH 7. DLS studies confirm that such histidine-derivatized nanoparticles remain colloidally stable over a wide pH range. A quartz crystal microbalance is employed at 25°C to assess the adsorption of both the cis-diol- and histidine-functionalized nanoparticles onto planar stainless steel at pH 6. The histidine-bearing nanoparticles adsorb much more strongly than their cis-diol counterparts. For the highest adsorbed amount of 70.5 mg m-2 , SEM indicates a fractional surface coverage of 0.23 for the adsorbed nanoparticles.
Collapse
Affiliation(s)
- Emma E. Brotherton
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Daniel Josland
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Csilla György
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Edwin C. Johnson
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Derek H.H. Chan
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | | | - Steven P. Armes
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| |
Collapse
|
8
|
Buang F, Fu M, Chatzifragkou A, Cairul Iqbal Mohd Amin M, Khutoryanskiy VV. Hydroxyethyl cellulose functionalised with maleimide groups as a new excipient with enhanced mucoadhesive properties. Int J Pharm 2023:123113. [PMID: 37301242 DOI: 10.1016/j.ijpharm.2023.123113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/28/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Hydroxyethylcellulose (HEC) is a non-ionic water-soluble polymer with poor mucoadhesive properties. The mucoadhesive properties of hydroxyethylcellulose can be improved by modifying it through conjugation with molecules containing maleimide groups. Maleimide groups interact with the thiol groups present in cysteine domains in the mucin via Michael addition reaction under physiological conditions to form a strong mucoadhesive bond. This will prolong the residence time of a dosage form containing this modified polymer and drug on mucosal surfaces. In this study HEC was modified by reaction with 4-bromophenyl maleimide in varying molar ratios and the successful synthesis was confirmed using 1H NMR and FTIR spectroscopies. The safety of the newly synthesised polymer derivatives was assessed with in vivo planaria assays and in vitro MTT assay utilising Caco-2 cell line. The synthesized maleimide-functionalised HEC solutions were sprayed onto blank tablets to develop a model dosage form. The physical properties and mucoadhesive behavior of these tablets were evaluated using a tensile test with sheep buccal mucosa. The maleimide-functionalised HEC exhibited superior mucoadhesive properties compared to unmodified HEC.
Collapse
Affiliation(s)
- Fhataheya Buang
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom; Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Manfei Fu
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - Afroditi Chatzifragkou
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom.
| |
Collapse
|
9
|
Yeruva T, Yang S, Doski S, Duncan GA. Hydrogels for Mucosal Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:1684-1700. [PMID: 37126538 DOI: 10.1021/acsabm.3c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mucosal tissues are often a desirable site of drug action to treat disease and engage the immune system. However, systemically administered drugs suffer from limited bioavailability in mucosal tissues where technologies to enable direct, local delivery to these sites would prove useful. In this Spotlight on Applications article, we discuss hydrogels as an attractive means for local delivery of therapeutics to address a range of conditions affecting the eye, nose, oral cavity, gastrointestinal, urinary bladder, and vaginal tracts. Considering the barriers to effective mucosal delivery, we provide an overview of the key parameters in the use of hydrogels for these applications. Finally, we highlight recent work demonstrating their use for inflammatory and infectious diseases affecting these tissues.
Collapse
Affiliation(s)
- Taj Yeruva
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Shadin Doski
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
10
|
Brotherton EE, Johnson EC, Smallridge MJ, Hammond DB, Leggett GJ, Armes SP. Hydrophilic Aldehyde-Functional Polymer Brushes: Synthesis, Characterization, and Potential Bioapplications. Macromolecules 2023; 56:2070-2080. [PMID: 36938510 PMCID: PMC10018759 DOI: 10.1021/acs.macromol.2c02471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) is used to polymerize a cis-diol-functional methacrylic monomer (herein denoted GEO5MA) from planar silicon wafers. Ellipsometry studies indicated dry brush thicknesses ranging from 40 to 120 nm. The hydrophilic PGEO5MA brush is then selectively oxidized using sodium periodate to produce an aldehyde-functional hydrophilic PAGEO5MA brush. This post-polymerization modification strategy provides access to significantly thicker brushes compared to those obtained by surface-initiated ARGET ATRP of the corresponding aldehyde-functional methacrylic monomer (AGEO5MA). The much slower brush growth achieved in the latter case is attributed to the relatively low aqueous solubility of the AGEO5MA monomer. X-ray photoelectron spectroscopy (XPS) analysis confirmed that precursor PGEO5MA brushes were essentially fully oxidized to the corresponding PAGEO5MA brushes within 30 min of exposure to a dilute aqueous solution of sodium periodate at 22 °C. PAGEO5MA brushes were then functionalized via Schiff base chemistry using an amino acid (histidine), followed by reductive amination with sodium cyanoborohydride. Subsequent XPS analysis indicated that the mean degree of histidine functionalization achieved under optimized conditions was approximately 81%. Moreover, an XPS depth profiling experiment confirmed that the histidine groups were uniformly distributed throughout the brush layer. Surface ζ potential measurements indicated a significant change in the electrophoretic behavior of the zwitterionic histidine-functionalized brush relative to that of the non-ionic PGEO5MA precursor brush. The former brush exhibited cationic character at low pH and anionic character at high pH, with an isoelectric point being observed at around pH 7. Finally, quartz crystal microbalance studies indicated minimal adsorption of a model globular protein (BSA) on a PGEO5MA brush-coated substrate, whereas strong protein adsorption via Schiff base chemistry occurred on a PAGEO5MA brush-coated substrate.
Collapse
Affiliation(s)
- Emma E. Brotherton
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Edwin C. Johnson
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | | | - Deborah B. Hammond
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Graham J. Leggett
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|