1
|
Ma M, Chen J, Dong L, Su Y, Tian S, Zhou Y, Li M. Polyoxometalates and their composites for antimicrobial applications: Advances, mechanisms and future prospects. J Inorg Biochem 2025; 262:112739. [PMID: 39293326 DOI: 10.1016/j.jinorgbio.2024.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
The overuse of antibiotics can lead to the development of antibiotic-resistant bacteria, which can be even more difficult to treat and pose an even greater threat to public health. In order to address the issue of antibiotic-resistant bacteria, researchers currently are exploring alternative methods of sterilization that are both effective and sustainable. Polyoxometalates (POMs), as emerging transition metal oxide compounds, exhibit significant potential in various applications due to their remarkable tunable physical and chemical performance, especially in antibacterial fields. They constitute a diverse family of inorganic clusters, characterized by a wide array of composition, structures and charges. Presently, several studies indicated that POM-based composites have garnered extensive attention in the realms of the antibacterial field and may become promising materials for future medical applications. Moreover, this review will focus on exploring the antibacterial properties and mechanisms of different kinds of organic-inorganic hybrid POMs, POM-based composites, films and hydrogels with substantial bioactivity, while POM-based composites have the dual advantages of POMs and other materials. Additionally, the potential antimicrobial mechanisms have also been discussed, mainly encompassing cell wall/membrane disruption, intracellular material leakage, heightened intracellular reactive oxygen species (ROS) levels, and depletion of glutathione (GSH). These findings open up exciting possibilities for POMs as exemplary materials in the antibacterial arena and expand their prospective applications.
Collapse
Affiliation(s)
- Min Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayin Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Liuyang Dong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yue Su
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China; International Joint Research Laboratory for Cell Medical Engineering of Henan, Kaifeng, Henan 475000, China.
| | - Shufang Tian
- School of Energy Science and Technology, Henan University, Zhengzhou 450046, China.
| | - Yuemin Zhou
- Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China; International Joint Research Laboratory for Cell Medical Engineering of Henan, Kaifeng, Henan 475000, China
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China; Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China.
| |
Collapse
|
2
|
Petrus E, Buils J, Garay-Ruiz D, Segado-Centellas M, Bo C. POMSimulator: An open-source tool for predicting the aqueous speciation and self-assembly mechanisms of polyoxometalates. J Comput Chem 2024; 45:2242-2250. [PMID: 38826122 DOI: 10.1002/jcc.27389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/04/2024]
Abstract
Elucidating the speciation (in terms of concentration versus pH) and understanding the formation mechanisms of polyoxometalates remains a significant challenge, both in experimental and computational domains. POMSimulator is a new methodology that tackles this problem from a purely computational perspective. The methodology uses results from quantum mechanics based methods to automatically set up the chemical reaction network, and to build speciation models. As a result, it becomes possible to predict speciation and phase diagrams, as well as to derive new insights into the formation mechanisms of large molecular clusters. In this work we present the main features of the first open-source version of the software. Since the first report [Chem. Sci. 2020, 11, 8448-8456], POMSimulator has undergone several improvements to keep up with the growing challenges that were tackled. After four years of research, we recognize that the source code is sufficiently stable to share a polished and user-friendly version. The Python code, manual, examples, and install instructions can be found at https://github.com/petrusen/pomsimulator.
Collapse
Affiliation(s)
- Enric Petrus
- Department of Environmental Chemistry, EAWAG: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Jordi Buils
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Diego Garay-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain
| | - Mireia Segado-Centellas
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
3
|
Petrovskii SK, Grachova EV, Monakhov KY. Bioorthogonal chemistry of polyoxometalates - challenges and prospects. Chem Sci 2024; 15:4202-4221. [PMID: 38516091 PMCID: PMC10952089 DOI: 10.1039/d3sc06284h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
Bioorthogonal chemistry has enabled scientists to carry out controlled chemical processes in high yields in vivo while minimizing hazardous effects. Its extension to the field of polyoxometalates (POMs) could open up new possibilities and new applications in molecular electronics, sensing and catalysis, including inside living cells. However, this comes with many challenges that need to be addressed to effectively implement and exploit bioorthogonal reactions in the chemistry of POMs. In particular, how to protect POMs from the biological environment but make their reactivity selective towards specific bioorthogonal tags (and thereby reduce their toxicity), as well as which bioorthogonal chemistry protocols are suitable for POMs and how reactions can be carried out are questions that we are exploring herein. This perspective conceptualizes and discusses advances in the supramolecular chemistry of POMs, their click chemistry, and POM-based surface engineering to develop innovative bioorthogonal approaches tailored to POMs and to improve POM biological tolerance.
Collapse
Affiliation(s)
| | - Elena V Grachova
- Institute of Chemistry, St Petersburg University Universitetskii pr. 26 St. Petersburg 198504 Russia
| | - Kirill Yu Monakhov
- Leibniz Institute of Surface Engineering (IOM) Permoserstr. 15 Leipzig 04318 Germany
| |
Collapse
|
4
|
Su Y, Liu X, Wang H, Hao Y, Guan L, Chen W. Polyoxometalate-Modified g-C 3N 4 Composites with High Work Function for Triboelectric Nanogenerators. Inorg Chem 2024; 63:1328-1336. [PMID: 38166367 DOI: 10.1021/acs.inorgchem.3c03818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Designing friction materials with high electron storage capacity, high work function, low cost, and high stability is an important method to improve the output performance of a triboelectric nanogenerator (TENG). Here, we report two kinds of friction materials based on Keggin-type polyoxometalates (POMs)-modified graphite carbon nitride (g-C3N4), namely, g-C3N4@PMo12 and g-C3N4@PW12, and form TENG with commercial indium tin oxide/poly(ethylene terephthalate) (ITO/PET) electrodes. The performance test shows that the g-C3N4@PMo12 TENG device exhibits a high output voltage of about 78 V, a current of about 657 nA, and a transfer charge of about 15 nC, which is more than 3 times higher than that of unmodified TENG. This performance improvement is attributed to the fact that POM loaded on the surface of g-C3N4 can be used as a shallow electron trap to increase the electron storage capacity through electron interaction and to increase the charge density on the surface of the material by increasing the work function of the composite. This work not only broadens the choices of TENG friction materials but also offers a practical means of enhancing TENG's output performance.
Collapse
Affiliation(s)
- Ying Su
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
- Dalian No.102 Middle School, Dalian 116103, P. R. China
| | - Xiaodong Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Haoyu Wang
- Center for Advanced Analytical Science, Guangzhou Key Laboratory of Sensing Materials and Devices, Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials and Devices, c/o School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yijia Hao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Lianyue Guan
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Xiantai Street 126, Changchun 130033, P. R. China
| | - Weilin Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
5
|
Joshi A, Acharya S, Devi N, Gupta R, Sharma D, Singh M. A polyoxomolybdate-based hybrid nano capsule as an antineoplastic agent. NANOSCALE ADVANCES 2023; 5:6045-6052. [PMID: 37941962 PMCID: PMC10628982 DOI: 10.1039/d3na00459g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
Polyoxometalates (POMs) are versatile anionic clusters which have attracted a lot of attention in biomedical investigations. To counteract the increasing resistance effect of cancer cells and the high toxicity of chemotherapeutic treatments, POM-based metallodrugs can be strategically synthesized by adjusting the stereochemical and physicochemical features of POMs. In the present report a polyoxomolybdate (POMo) based organic-inorganic hybrid solid (C6H16N)(C6H15N)2[Mo8O26]·3H2O, solid 1, has been synthesized and its antitumoral activities have been investigated against three cancer cell lines namely, A549 (Lung cancer), HepG2 (Liver cancer), and MCF-7 (Breast cancer) with IC50 values 56.2 μmol L-1, 57.3 μmol L-1, and 55.2 μmol L-1 respectively. The structural characterization revealed that solid 1 consists of an octa molybdate-type cluster connected by three triethylamine molecules via hydrogen bonding interactions. The electron microscopy analysis suggests the nanocapsule-like morphology of solid 1 in the size range of 50-70 nm. The UV-vis absorption spectra were used to assess the binding ability of synthesized POM-based solid 1 to calf thymus DNA (ctDNA), which further explained the binding interaction between POMo and ctDNA and the binding constant was calculated to be 2.246 × 103 giving evidence of groove binding.
Collapse
Affiliation(s)
- Arti Joshi
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Sobhna Acharya
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Neeta Devi
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Ruby Gupta
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Deepika Sharma
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| | - Monika Singh
- Institute of Nano Science and Technology Knowledge City, Sector-81 Mohali Punjab India
| |
Collapse
|
6
|
Biesen L, Hartmann Y, Müller TJJ. Diaroyl-S,N-ketene Acetals: Red-Shifted Solid-State and Aggregation-Induced Emitters from a One-Pot Synthesis. Chemistry 2023; 29:e202301908. [PMID: 37475616 DOI: 10.1002/chem.202301908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Symmetric and unsymmetric diaroyl-S,N-ketene acetals can be readily accessed in consecutive syntheses in good to excellent yields by exploiting the inherent nucleophilic character of the methine position. Different aroyl-S,N-ketene acetals as well as acid chlorides yield a library of 19 diaroyl compounds with substitution and linker pattern-tunable emission properties, leading to a significant red-shift of emission in the solid and aggregated state, which was thoroughly investigated. Additionally, the stability of the luminescent aggregates is highly increased. In a follow-up one-pot procedure, pyrazolo-S,N-ketene acetals can easily be accessed employing a nucleophilic cyclocondensation.
Collapse
Affiliation(s)
- Lukas Biesen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Yannic Hartmann
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
7
|
Gumerova NI, Rompel A. Speciation atlas of polyoxometalates in aqueous solutions. SCIENCE ADVANCES 2023; 9:eadi0814. [PMID: 37343109 PMCID: PMC10284552 DOI: 10.1126/sciadv.adi0814] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
Speciation is the key parameter in solution chemistry that describes the composition, concentration, and oxidation state of each chemical form of an element present in a sample. The speciation study of complex polyatomic ions has remained challenging because of the large number of factors affecting stability and the limited number of direct methods. To address these challenges, we developed the speciation atlas of 10 polyoxometalates commonly used in catalytic and biological applications in aqueous solutions, where the speciation atlas provides both a species distribution database and a predictive model for other polyoxometalates to be used. Compiled for six different polyoxometalate archetypes with three types of addenda ions based on 1309 nuclear magnetic resonance spectra under 54 different conditions, the atlas has revealed a previously unknown behavior of polyoxometalates that may account for their potency as biological agents and catalysts. The atlas is intended to promote the interdisciplinary use of metal oxides in various scientific fields.
Collapse
|
8
|
Cheng Y, Sun C, Chang Y, Wu J, Zhang Z, Liu Y, Ge S, Li Z, Li X, Sun L, Zang D. Photoelectrochemical biosensor based on SiW 12@CdS quantum dots for the highly sensitive detection of HPV 16 DNA. Front Bioeng Biotechnol 2023; 11:1193052. [PMID: 37388766 PMCID: PMC10303914 DOI: 10.3389/fbioe.2023.1193052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
A highly sensitive biosensor for detecting HPV 16 DNA was prepared based on Keggin-type polyoxometalate (SiW12)-grafted CdS quantum dots (SiW12@CdS QDs) and colloidal gold nanoparticles (Au NPs), which exhibited remarkable selectivity and sensitivity upon target DNA detection because of its excellent photoelectrochemical (PEC) response. Here, an enhanced photoelectronic response ability was achieved with the strong association of SiW12@CdS QDs by polyoxometalate modification, which was developed through a convenient hydrothermal process. Furthermore, on Au NP-modified indium tin oxide slides, a multiple-site tripodal DNA walker sensing platform coupled with T7 exonuclease was successfully fabricated with SiW12@CdS QDs/NP DNA as a probe for detecting HPV 16 DNA. Due to the remarkable conductivity of Au NPs, the photosensitivity of the as-prepared biosensor was improved in an I3-/I- solution and avoided the use of other regents toxic to living organisms. Finally, under optimized conditions, the as-prepared biosensor protocol demonstrated wide linear ranges (15-130 nM), with a limit of detection of 0.8 nM and high selectivity, stability, and reproducibility. Moreover, the proposed PEC biosensor platform offers a reliable pathway for detecting other biological molecules with nano-functional materials.
Collapse
Affiliation(s)
- Yao Cheng
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chaoyue Sun
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Yuhua Chang
- Shandong Provincial Maternal and Child Healthcare Hospital, Jinan, China
| | - Jiayin Wu
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhihao Zhang
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China
| | - Zhao Li
- Suzhou KunTao Intelligent Manufacturing Technology Co., Ltd., Suzhou, China
| | - Xiao Li
- NMPA Key Laboratory for Quality Evaluation of Medical Materials and Biological Protective Devices, Jinan, China
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, Jinan, China
| | - Liang Sun
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dejin Zang
- National Key Laboratory of Advanced Drug Delivery and Release System, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare and Uncommon Diseases of Shandong Province, School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|