1
|
Yang J, Gould TJ, Jeon B, Ji Y. Broad-Spectrum Antibacterial Activity of Antioxidant Octyl Gallate and Its Impact on Gut Microbiome. Antibiotics (Basel) 2024; 13:731. [PMID: 39200031 PMCID: PMC11350663 DOI: 10.3390/antibiotics13080731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
In this study, we investigated the antibacterial activity of octyl gallate (OG), an antioxidant food additive, against both Gram-positive and Gram-negative bacterial pathogens. OG demonstrated robust bactericidal activity against Gram-positive bacterial pathogens with minimum inhibitory concentrations (MIC) of 4 to 8 µg/mL and minimum bactericidal concentrations (MBC) of 8 to 16 µg/mL in vitro. However, OG exhibited limited antibacterial activity against Gram-negative bacteria, including E. coli, although it could inhibit bacterial growth in vitro. Importantly, OG administration in mice altered the fecal microbiome, significantly reducing microbial diversity, modifying community structure, and increasing the abundance of beneficial bacteria. Additionally, OG displayed low cytotoxicity and hemolytic activity. These findings suggest that OG could be developed as a novel antibacterial agent, particularly against multi-drug-resistant MRSA. Our results provide new insights into the therapeutic potential of OG in modulating the gut microbiome, especially in conditions associated with microbial imbalance, while ensuring food safety.
Collapse
Affiliation(s)
- Junshu Yang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Trevor J. Gould
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Byeonghwa Jeon
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yinduo Ji
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
2
|
Longin H, Broeckaert N, van Noort V, Lavigne R, Hendrix H. Posttranslational modifications in bacteria during phage infection. Curr Opin Microbiol 2024; 77:102425. [PMID: 38262273 DOI: 10.1016/j.mib.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
During phage infection, both virus and bacteria attempt to gain and/or maintain control over critical bacterial functions, through a plethora of strategies. These strategies include posttranslational modifications (PTMs, including phosphorylation, ribosylation, and acetylation), as rapid and dynamic regulators of protein behavior. However, to date, knowledge on the topic remains scarce and fragmented, while a more systematic investigation lies within reach. The release of AlphaFold, which advances PTM enzyme discovery and functional elucidation, and the increasing inclusivity and scale of mass spectrometry applications to new PTM types, could significantly accelerate research in the field. In this review, we highlight the current knowledge on PTMs during phage infection, and conceive a possible pipeline for future research, following an enzyme-target-function scheme.
Collapse
Affiliation(s)
- Hannelore Longin
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium; Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Nand Broeckaert
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium; Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Vera van Noort
- Computational Systems Biology, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20 box 2460, 3001 Heverlee, Belgium; Institute of Biology, Leiden University, Sylviusweg 72, 2333 Leiden, the Netherlands
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001 Heverlee, Belgium.
| |
Collapse
|
3
|
Feng Q, Wang C, Miao X, Wu M. A novel paper-based electrochemiluminescence biosensor for non-destructive detection of pathogenic bacteria in real samples. Talanta 2024; 267:125224. [PMID: 37751632 DOI: 10.1016/j.talanta.2023.125224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
The demand for sensitive, portable, and non-destructive analysis of pathogenic bacteria is of significance in point-of-care diagnosis. Herein, we constructed a smart electrochemiluminescence (ECL) biosensor by integrating a flexible paper-based sensing device and a disposable three-electrode detecting system. Staphylococcus aureus (S. aureus)-responsive cellulose paper was prepared by employing aptamer as recognition element and a probe DNA (probe DNA-GOD) tagged with glucose oxidase (GOD) as a signal amplification unit. The formation of aptamer-S. aureus complex mediated the quantitative release of probe DNA-GOD. The remaining probe DNA-GOD on the paper-based aptasensor was then activated by glucose, which resulted in a significant decrease in ECL signal. To further improve the ECL performance of biosensor, a large number of Ru(bpy)32+ molecules were embedded into porous zinc-based metal-organic frameworks (MOFs) to form Ru(bpy)32+ functionalized MOF nanoflowers (Ru-MOF-5 NFs). Such biosensor enabled accurate, non-destructive, and real-time monitoring of S. aureus-contaminated food samples, opening a new avenue for sensitive recognition of pathogenic bacteria.
Collapse
Affiliation(s)
- Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chengcheng Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Meisheng Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
4
|
Xia FW, Guo BW, Zhao Y, Wang JL, Chen Y, Pan X, Li X, Song JX, Wan Y, Feng S, Wu MY. Type I Photosensitizer Targeting Glycans: Overcoming Biofilm Resistance by Inhibiting the Two-Component System, Quorum Sensing, and Multidrug Efflux. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2309797. [PMID: 37973189 DOI: 10.1002/adma.202309797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Stubborn biofilm infections pose serious threats to human health due to the persistence, recurrence, and dramatically magnified antibiotic resistance. Photodynamic therapy has emerged as a promising approach to combat biofilm. Nevertheless, how to inhibit the bacterial signal transduction system and the efflux pump to conquer biofilm recurrence and resistance remains a challenging and unaddressed issue. Herein, a boric acid-functionalized lipophilic cationic type I photosensitizer, ACR-DMP, is developed, which efficiently generates •OH to overcome the hypoxic microenvironment and photodynamically eradicates methicillin-resistant Staphylococcus aureus (MRSA) and biofilms. Furthermore, it not only alters membrane potential homeostasis and osmotic pressure balance due to its strong binding ability with plasma membrane but also inhibits quorum sensing and the two-component system, reduces virulence factors, and regulates the activity of the drug efflux pump attributed to the glycan-targeting ability, helping to prevent biofilm recurrence and conquer biofilm resistance. In vivo, ACR-DMP successfully obliterates MRSA biofilms attached to implanted medical catheters, alleviates inflammation, and promotes vascularization, thereby combating infections and accelerating wound healing. This work not only provides an efficient strategy to combat stubborn biofilm infections and bacterial multidrug resistance but also offers systematic guidance for the rational design of next-generation advanced antimicrobial materials.
Collapse
Affiliation(s)
- Feng-Wei Xia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Bing-Wei Guo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yu Zhao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jia-Li Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuan Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiu Pan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xin Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jia-Xing Song
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yu Wan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ming-Yu Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
5
|
Raherisoanjato J, Henke MT. Multi-arming ourselves against drug-resistant bacteria. Cell Host Microbe 2023; 31:1075-1076. [PMID: 37442092 DOI: 10.1016/j.chom.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
New classes of antibiotics are desperately needed in our fight against antibiotic-resistant bacterial infections. Jia et al. publish a new "multi-armed" antibiotic scaffold that effectively treats methicillin-resistant Staphylococcus aureus infections in mice. These compounds are structurally unlike pre-clinical or approved antibiotics, and they may hit an "irresistible" target.
Collapse
Affiliation(s)
- Jessia Raherisoanjato
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy University of Illinois Chicago, Chicago, IL 60607, USA
| | - Matthew T Henke
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy University of Illinois Chicago, Chicago, IL 60607, USA.
| |
Collapse
|