1
|
Kim YI, Kim S, Kim S, Aldalbahi A, Rahaman M, An S, Yarin AL, Yoon SS. Electro-Thermopneumatically Actuated, Adhesion-Force Controllable Octopus-Like Suction Cup Actuator. Soft Robot 2024; 11:869-877. [PMID: 38557240 DOI: 10.1089/soro.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
A light-weight actuator developed in this work belongs to a class of soft robots, and in a sense, resembles an octopus. Its main function is in the attachment or detachment to a solid surface driven by an electro-thermopneumatic mechanism. In this study, a suction cup similar to that of an octopus is manufactured from an elastomer, which is actuated by an electro-thermopneumatic system, mimicking the movement of the octopus' acetabular muscle. Accordingly, the adhesion force generated by such an actuator is regulated by releasing the inner air or adjusting the cup's elasticity. This actuator is designed to be an assistive device that facilitates the individual's physical strength in case of conditions related to aging or cerebellar disease, or a person who lost limbs. In this study, the actuator capabilities are demonstrated in the form of a grip-assisting glove and prosthetic attacher. Moreover, the adhesion mechanism is quantified by numerical simulations and verified experimentally.
Collapse
Affiliation(s)
- Yong Il Kim
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Siwung Kim
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Seongdong Kim
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Ali Aldalbahi
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Seongpil An
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and Department of Nano Science and Technology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Alexander L Yarin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois, USA
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Sam S Yoon
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Wang C, Zhang X, Fan Y, Yu S, Liu M, Feng L, Sun Q, Pan P. Principles and Design of Bionic Hydrogel Adhesives for Skin Wound Treatment. Polymers (Basel) 2024; 16:1937. [PMID: 39000792 PMCID: PMC11244016 DOI: 10.3390/polym16131937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Over millions of years of evolution, nature has developed a myriad of unique features that have inspired the design of adhesives for wound healing. Bionic hydrogel adhesives, capable of adapting to the dynamic movements of tissues, possess superior biocompatibility and effectively promote the healing of both external and internal wounds. This paper provides a systematic review of the design and principles of these adhesives, focusing on the treatment of skin wounds, and explores the feasibility of incorporating nature-inspired properties into their design. The adhesion mechanisms of bionic adhesives are analyzed from both chemical and physical perspectives. Materials from natural and synthetic polymers commonly used as adhesives are detailed regarding their biocompatibility and degradability. The multifunctional design elements of hydrogel adhesives for skin trauma treatment, such as self-healing, drug release, responsive design, and optimization of mechanical and physical properties, are further explored. The aim is to overcome the limitations of conventional treatments and offer a safer, more effective solution for the application of bionic wound dressings.
Collapse
Affiliation(s)
- Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Xinyu Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Yinuo Fan
- Marine College, Shandong University, Weihai 264209, China
| | - Shuhan Yu
- Marine College, Shandong University, Weihai 264209, China
| | - Man Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Linhan Feng
- Marine College, Shandong University, Weihai 264209, China
| | - Qisen Sun
- Marine College, Shandong University, Weihai 264209, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai 200025, China
| |
Collapse
|
3
|
Yibibulla T, Hou L, Mead JL, Huang H, Fatikow S, Wang S. Frictional behavior of one-dimensional materials: an experimental perspective. NANOSCALE ADVANCES 2024; 6:3251-3284. [PMID: 38933866 PMCID: PMC11197433 DOI: 10.1039/d4na00039k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
The frictional behavior of one-dimensional (1D) materials, including nanotubes, nanowires, and nanofibers, significantly influences the efficient fabrication, functionality, and reliability of innovative devices integrating 1D components. Such devices comprise piezoelectric and triboelectric nanogenerators, biosensing and implantable devices, along with biomimetic adhesives based on 1D arrays. This review compiles and critically assesses recent experimental techniques for exploring the frictional behavior of 1D materials. Specifically, it underscores various measurement methods and technologies employing atomic force microscopy, electron microscopy, and optical microscopy nanomanipulation. The emphasis is on their primary applications and challenges in measuring and characterizing the frictional behavior of 1D materials. Additionally, we discuss key accomplishments over the past two decades in comprehending the frictional behaviors of 1D materials, with a focus on factors such as materials combination, interface roughness, environmental humidity, and non-uniformity. Finally, we offer a brief perspective on ongoing challenges and future directions, encompassing the systematic investigation of the testing environment and conditions, as well as the modification of surface friction through surface alterations.
Collapse
Affiliation(s)
- Tursunay Yibibulla
- School of Physics, Central South University Changsha 410083 P. R. China
- School of Physics and Electronics, Nanning Normal University Nanning 530001 P. R. China
| | - Lizhen Hou
- School of Physics and Electronics, Hunan Normal University Changsha 410083 P. R. China
| | - James L Mead
- Division Microrobotics and Control Engineering, Department of Computing Science, University of Oldenburg D-26129 Oldenburg Germany
| | - Han Huang
- School of Advanced Manufacturing, Sun-Yat-sen University Shenzhen 518107 P. R. China
| | - Sergej Fatikow
- Division Microrobotics and Control Engineering, Department of Computing Science, University of Oldenburg D-26129 Oldenburg Germany
| | - Shiliang Wang
- School of Physics, Central South University Changsha 410083 P. R. China
| |
Collapse
|
4
|
Li X, Zou J, He Z, Sun Y, Song X, He W. The interaction between particles and vascular endothelium in blood flow. Adv Drug Deliv Rev 2024; 207:115216. [PMID: 38387770 DOI: 10.1016/j.addr.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Particle-based drug delivery systems have shown promising application potential to treat human diseases; however, an incomplete understanding of their interactions with vascular endothelium in blood flow prevents their inclusion into mainstream clinical applications. The flow performance of nano/micro-sized particles in the blood are disturbed by many external/internal factors, including blood constituents, particle properties, and endothelium bioactivities, affecting the fate of particles in vivo and therapeutic effects for diseases. This review highlights how the blood constituents, hemodynamic environment and particle properties influence the interactions and particle activities in vivo. Moreover, we briefly summarized the structure and functions of endothelium and simulated devices for studying particle performance under blood flow conditions. Finally, based on particle-endothelium interactions, we propose future opportunities for novel therapeutic strategies and provide solutions to challenges in particle delivery systems for accelerating their clinical translation. This review helps provoke an increasing in-depth understanding of particle-endothelium interactions and inspires more strategies that may benefit the development of particle medicine.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongshan He
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co., LtD., Jinan 250000, PR China
| | - Xiangrong Song
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China.
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China.
| |
Collapse
|
5
|
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res 2023; 28:537. [PMID: 38001554 PMCID: PMC10668503 DOI: 10.1186/s40001-023-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
This paper gives a detailed analysis of nanotechnology's rising involvement in numerous surgical fields. We investigate the use of nanotechnology in orthopedic surgery, neurosurgery, plastic surgery, surgical oncology, heart surgery, vascular surgery, ophthalmic surgery, thoracic surgery, and minimally invasive surgery. The paper details how nanotechnology helps with arthroplasty, chondrogenesis, tissue regeneration, wound healing, and more. It also discusses the employment of nanomaterials in implant surfaces, bone grafting, and breast implants, among other things. The article also explores various nanotechnology uses, including stem cell-incorporated nano scaffolds, nano-surgery, hemostasis, nerve healing, nanorobots, and diagnostic applications. The ethical and safety implications of using nanotechnology in surgery are also addressed. The future possibilities of nanotechnology are investigated, pointing to a possible route for improved patient outcomes. The essay finishes with a comment on nanotechnology's transformational influence in surgical applications and its promise for future breakthroughs.
Collapse
Affiliation(s)
- Farzad Abaszadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazal Khajouie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
6
|
Yan S, Zhang F, Luo L, Wang L, Liu Y, Leng J. Shape Memory Polymer Composites: 4D Printing, Smart Structures, and Applications. RESEARCH (WASHINGTON, D.C.) 2023; 6:0234. [PMID: 37941913 PMCID: PMC10629366 DOI: 10.34133/research.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
Shape memory polymers (SMPs) and their composites (SMPCs) are smart materials that can be stably deformed and then return to their original shape under external stimulation, thus having a memory of their shape. Three-dimensional (3D) printing is an advanced technology for fabricating products using a digital software tool. Four-dimensional (4D) printing is a new generation of additive manufacturing technology that combines shape memory materials and 3D printing technology. Currently, 4D-printed SMPs and SMPCs are gaining considerable research attention and are finding use in various fields, including biomedical science. This review introduces SMPs, SMPCs, and 4D printing technologies, highlighting several special 4D-printed structures. It summarizes the recent research progress of 4D-printed SMPs and SMPCs in various fields, with particular emphasis on biomedical applications. Additionally, it presents an overview of the challenges and development prospects of 4D-printed SMPs and SMPCs and provides a preliminary discussion and useful reference for the research and application of 4D-printed SMPs and SMPCs.
Collapse
Affiliation(s)
- Shiyu Yan
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| | - Fenghua Zhang
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| | - Lan Luo
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| | - Linlin Wang
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| | - Yanju Liu
- Department of Astronautic Science and Mechanics,
Harbin Institute of Technology (HIT), No. 92 West Dazhi Street, Harbin 150000, People’s Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures,
Harbin Institute of Technology (HIT), No.2 Yikuang Street, Harbin 150000, People’s Republic of China
| |
Collapse
|
7
|
Harun-Ur-Rashid M, Jahan I, Foyez T, Imran AB. Bio-Inspired Nanomaterials for Micro/Nanodevices: A New Era in Biomedical Applications. MICROMACHINES 2023; 14:1786. [PMID: 37763949 PMCID: PMC10536921 DOI: 10.3390/mi14091786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Exploring bio-inspired nanomaterials (BINMs) and incorporating them into micro/nanodevices represent a significant development in biomedical applications. Nanomaterials, engineered to imitate biological structures and processes, exhibit distinctive attributes such as exceptional biocompatibility, multifunctionality, and unparalleled versatility. The utilization of BINMs demonstrates significant potential in diverse domains of biomedical micro/nanodevices, encompassing biosensors, targeted drug delivery systems, and advanced tissue engineering constructs. This article thoroughly examines the development and distinctive attributes of various BINMs, including those originating from proteins, DNA, and biomimetic polymers. Significant attention is directed toward incorporating these entities into micro/nanodevices and the subsequent biomedical ramifications that arise. This review explores biomimicry's structure-function correlations. Synthesis mosaics include bioprocesses, biomolecules, and natural structures. These nanomaterials' interfaces use biomimetic functionalization and geometric adaptations, transforming drug delivery, nanobiosensing, bio-inspired organ-on-chip systems, cancer-on-chip models, wound healing dressing mats, and antimicrobial surfaces. It provides an in-depth analysis of the existing challenges and proposes prospective strategies to improve the efficiency, performance, and reliability of these devices. Furthermore, this study offers a forward-thinking viewpoint highlighting potential avenues for future exploration and advancement. The objective is to effectively utilize and maximize the application of BINMs in the progression of biomedical micro/nanodevices, thereby propelling this rapidly developing field toward its promising future.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tahmina Foyez
- Department of Pharmacy, United International University, Dhaka 1212, Bangladesh;
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
8
|
Mohammed M, Oleiwi JK, Jawad AJM, Mohammed AM, Osman AF, Rahman R, Adam T, Betar BO, Gopinath SC, Dahham OS. Effect of zinc oxide surface treatment concentration and nanofiller loading on the flexural properties of unsaturated polyester/kenaf nanocomposites. Heliyon 2023; 9:e20051. [PMID: 37809763 PMCID: PMC10559814 DOI: 10.1016/j.heliyon.2023.e20051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023] Open
Abstract
Due to environmental concerns and budgetary constraints associated with synthetic fibers, natural fibers (NFr) are becoming increasingly popular as reinforcement in polymer composites (PCs) for structural components and construction materials. The surface treatment (ST) method is a well-established technique for enhancing the strength of interfacial bonding between NFr and the polymer matrix (PM). As a result, this research aims to determine the effect of ST with zinc oxide nanoparticles (ZnONPs) on the flexural properties of unsaturated polyester (UPE)/kenaf fiber (KF) nanocomposites. The hand lay-up technique was employed to produce KF-reinforced unsaturated polyester composites (KF/UPE) for this investigation. UPE/KF-ZnONPs composites were made with varying NFr loadings (weight percent), ranging from 10 to 40%. KF was treated with five distinct amounts of ZnONPs (from 1 to 5% weight percent). According to the findings of the investigation, the composite samples incorporating ZnONPs displayed superior optimum flexural properties compared to the untreated KF composite. It was found that 2% ZnONPs was optimal, and ST with ZnONPs could produce robust KF with improved flexural properties.
Collapse
Affiliation(s)
- Mohammed Mohammed
- Center of Excellence Geopolymer & Green Technology (CEGeoGTech), Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| | - Jawad K. Oleiwi
- Department of Materials Engineering, University of Technology, Baghdad, Iraq
| | | | - Aeshah M. Mohammed
- University of Bagdad College of Education for Pure Science Ibn-Alhaitham, Iraq
| | - Azlin F. Osman
- Center of Excellence Geopolymer & Green Technology (CEGeoGTech), Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| | - Rozyanty Rahman
- Center of Excellence Geopolymer & Green Technology (CEGeoGTech), Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| | - Tijjani Adam
- Faculty of Electronics Engineering Technology, Universiti Malaysia Perlis, Kampus Uniciti Alam Sg. Chuchuh, 02100 Padang Besar (U), Perlis, Malaysia
| | - Bashir O. Betar
- Research Center (NANOCAT), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Subash C.B. Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Omar S. Dahham
- Chemical Engineering Department, College of Engineering, University of Baghdad, Iraq
- Department of Petroleum and Gas Refinery Engineering, Al-Farabi University College, Baghdad, Iraq
| |
Collapse
|
9
|
He B, Chen L, Biehl P, Meng X, Chen W, Xu D, Ren J, Zhang K. Scale-Spanning Strong Adhesion Using Cellulose-Based Microgels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300865. [PMID: 37162453 DOI: 10.1002/smll.202300865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Indexed: 05/11/2023]
Abstract
Adhesive gels derived from biobased sustainable materials have extremely broad application prospects, such as in flexible smart materials and biomedicine fields. Combining high toughness and strong, persisting repeatable adhesion has always been a daunting challenge for adhesive gels. However, bulk gels based on polysaccharides as the most abundant bio-based compounds usually possess a high toughness but weak interfacial adhesion due to the strong hydration potential. Herein, a novel kind of highly tough microgel membranes with rough surfaces is fabricated using loosely chemically cross-linked dihydroxypropyl cellulose (cDHPC) microgels (average size = 1.25 ± 0.03 µm). Such microgel membranes exhibit strong, instant, and persisting adhesion to various substrates with different surface roughness. Slight chemical cross-linking and multiple physical interactions within microgels and resulting microgel membranes lead to high tensile strength and toughness of 0.23 ± 0.03 MPa and 73.8 ± 9.3 KJ m-3 , respectively. The maximum adhesive strength and debonding work exceed 320 ± 0.50 KPa and 160.97 ± 0.20 J m-2 , respectively. After five cycles (re-lap after detaching), the adhesive strength still remains above 200 KPa. Their adhesive properties outperform most bio-based adhesive gels and even petroleum-based gels, which are based on synergistic molecular and microscaled topological interactions.
Collapse
Affiliation(s)
- Bei He
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Lizhen Chen
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Philip Biehl
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Xintong Meng
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Wenbo Chen
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Dan Xu
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Dept. Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| |
Collapse
|
10
|
Wang S, Zhao M, Yan Y, Li P, Huang W. Flexible Monitoring, Diagnosis, and Therapy by Microneedles with Versatile Materials and Devices toward Multifunction Scope. RESEARCH (WASHINGTON, D.C.) 2023; 6:0128. [PMID: 37223469 PMCID: PMC10202386 DOI: 10.34133/research.0128] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Microneedles (MNs) have drawn rising attention owing to their merits of convenience, noninvasiveness, flexible applicability, painless microchannels with boosted metabolism, and precisely tailored multifunction control. MNs can be modified to serve as novel transdermal drug delivery, which conventionally confront with the penetration barrier caused by skin stratum corneum. The micrometer-sized needles create channels through stratum corneum, enabling efficient drug delivery to the dermis for gratifying efficacy. Then, incorporating photosensitizer or photothermal agents into MNs can conduct photodynamic or photothermal therapy, respectively. Besides, health monitoring and medical detection by MN sensors can extract information from skin interstitial fluid and other biochemical/electronic signals. Here, this review discloses a novel monitoring, diagnostic, and therapeutic pattern by MNs, with elaborate discussion about the classified formation of MNs together with various applications and inherent mechanism. Hereby, multifunction development and outlook from biomedical/nanotechnology/photoelectric/devices/informatics to multidisciplinary applications are provided. Programmable intelligent MNs enable logic encoding of diverse monitoring and treatment pathways to extract signals, optimize the therapy efficacy, real-time monitoring, remote control, and drug screening, and take instant treatment.
Collapse
Affiliation(s)
| | | | - Yibo Yan
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| | - Peng Li
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| | - Wei Huang
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| |
Collapse
|
11
|
Shi Z, Zhu B, Wang Z, Xiao K, Wang Y, Xue L. Robust and Elevated Adhesion and Anisotropic Friction in a Bioinspired Bridged Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3784-3791. [PMID: 36848498 DOI: 10.1021/acs.langmuir.3c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bioinspired structured adhesives have promising applications in the fields of robotics, electronics, medical engineering, and so forth. The strong adhesion and friction as well as the durability of bioinspired hierarchical fibrillar adhesives are essential for their applications, which require fine submicrometer structures to stay stable during repeated use. Here, we develop a bioinspired bridged micropillars array (BP), which realizes a 2.18-fold adhesion and a 2.02-fold friction as compared to that of poly(dimethylsiloxane) (PDMS) original micropillar arrays. The aligned bridges offer BP strong anisotropic friction. The adhesion and friction of BP can be finely regulated by changing the modulus of the bridges. Moreover, BP shows strong adaptability to surface curvature (ranging from 0 to 800 m-1), excellent durability over 500 repeating cycles of attachment/detachment, and self-cleaning ability. This study presents a novel approach for designing robust structured adhesives with strong and anisotropic friction, which may find applications in areas such as climbing robots and cargo transportation.
Collapse
Affiliation(s)
- Zhekun Shi
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
| | - Bo Zhu
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
| | - Zhuo Wang
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
| | - Kangjian Xiao
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
| | - Yan Wang
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
| | - Longjian Xue
- School of Power and Mechanical Engineering, The Institute of Technological Science, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| |
Collapse
|
12
|
Emonson NS, Randall JD, Allardyce BJ, Stanfield MK, Dharmasiri B, Stojcevski F, Henderson LC. Promoting Silk Fibroin Adhesion to Stainless Steel Surfaces by Interface Tailoring. Chempluschem 2023; 88:e202200335. [PMID: 36449627 DOI: 10.1002/cplu.202200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Bonding dissimilar materials has been a persistent challenge for decades. This paper presents a method to modify a stainless steel surface (316 L), routinely used in medical applications to enable the significant adhesion of a biopolymer (silk fibroin). The metallic surface was first covalently grafting with polyacrylamide, to enable a hydrogen bonding compatible surface. The polymerisation was initiated via the irreversible electrochemical reduction of a 4-nitrobenzene diazonium salt (20 mM), in the presence of an acrylamide monomer (1 M) at progressively faster scan rates (0.01 V/s to 1 V/s). Examination of the modified samples by FT-IR was consistent with successful surface modification, via observations of the acrylamide carbonyl (1600-1650 cm-1 ) was observed, with more intense peaks correlating to slower scan rates. Similar observations were made with respect to increasing surface polarity, assessed by water contact angle. Reductions of >60° were observed for the grafted surfaces, relative to the unmodified control materials, indicating a surface able to undergo significant hydrogen bonding. The adhesion of silk to the metallic surface was quantified using a lap shear test, effectively using silk fibroin as an adhesive. Adhesion improvements of 5-7-fold, from 4.1 MPa to 29.3 MPa per gram of silk fibroin, were observed for the treated samples, highlighting the beneficial effect of this surface treatment. The methods developed in this work can be transferred to any metallic (or conductive) surface and can be tailored to complement any desired interface.
Collapse
Affiliation(s)
- Nicholas S Emonson
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - James D Randall
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Benjamin J Allardyce
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Melissa K Stanfield
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Bhagya Dharmasiri
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Filip Stojcevski
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| |
Collapse
|
13
|
Wang M, Deng Z, Guo Y, Xu P. Engineering functional natural polymer-based nanocomposite hydrogels for wound healing. NANOSCALE ADVANCES 2022; 5:27-45. [PMID: 36605790 PMCID: PMC9765432 DOI: 10.1039/d2na00700b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Skin injury occurs due to acute trauma, chronic trauma, infection, and surgical intervention, which can result in severe dysfunction and even death in humans. Therefore, clinical intervention is critical for the treatment of skin wounds. One idealized method is to use wound dressings to protect skin wounds and promote wound healing. Among these wound dressings, nanocomposite natural polymer hydrogels (NNPHs) are multifunctional wound dressings for wound healing. The combination of nanomaterials and natural polymer hydrogels avoids the shortcomings of a single component. Moreover, nanomaterials could provide improved antibacterial, anti-inflammatory, antioxidant, stimuli-responsive, electrically conductive and mechanical properties of hydrogels to accelerate wound healing. This review focuses on recent advancements in NNPHs for skin wound healing and repair. Initially, the functions and requirements of NNPHs as wound dressings were introduced. Second, the design, preparation and capacities of representative NNPHs are classified based on their nanomaterial. Third, skin wound repair applications of NNPHs have been summarized based on the types of wounds. Finally, the potential issues of NNPHs are discussed, and future research is proposed to prepare idealized multifunctional NNPHs for skin tissue regeneration.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University Xi'an 710000 China
| | - Zexing Deng
- College of Materials Science and Engineering, Xi'an University of Science and Technology Xi'an 710054 China
| | - Yi Guo
- Shaanxi Key Laboratory of Brain Disorders, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University Xi'an 710021 China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University Xi'an 710000 China
| |
Collapse
|
14
|
Melrose J. High Performance Marine and Terrestrial Bioadhesives and the Biomedical Applications They Have Inspired. Molecules 2022; 27:molecules27248982. [PMID: 36558114 PMCID: PMC9783952 DOI: 10.3390/molecules27248982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
This study has reviewed the naturally occurring bioadhesives produced in marine and freshwater aqueous environments and in the mucinous exudates of some terrestrial animals which have remarkable properties providing adhesion under difficult environmental conditions. These bioadhesives have inspired the development of medical bioadhesives with impressive properties that provide an effective alternative to suturing surgical wounds improving closure and healing of wounds in technically demanding tissues such as the heart, lung and soft tissues like the brain and intestinal mucosa. The Gecko has developed a dry-adhesive system of exceptional performance and has inspired the development of new generation re-usable tapes applicable to many medical procedures. The silk of spider webs has been equally inspiring to structural engineers and materials scientists and has revealed innovative properties which have led to new generation technologies in photonics, phononics and micro-electronics in the development of wearable biosensors. Man made products designed to emulate the performance of these natural bioadhesive molecules are improving wound closure and healing of problematic lesions such as diabetic foot ulcers which are notoriously painful and have also found application in many other areas in biomedicine. Armed with information on the mechanistic properties of these impressive biomolecules major advances are expected in biomedicine, micro-electronics, photonics, materials science, artificial intelligence and robotics technology.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia;
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, The University of Sydney, St. Leonards, NSW 2065, Australia
| |
Collapse
|
15
|
|