1
|
García‐Arribas AB, Ibáñez‐Freire P, Carlero D, Palacios‐Alonso P, Cantero‐Reviejo M, Ares P, López‐Polín G, Yan H, Wang Y, Sarkar S, Chhowalla M, Oksanen HM, Martín‐Benito J, de Pablo PJ, Delgado‐Buscalioni R. Broad Adaptability of Coronavirus Adhesion Revealed from the Complementary Surface Affinity of Membrane and Spikes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404186. [PMID: 39231361 PMCID: PMC11538687 DOI: 10.1002/advs.202404186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Indexed: 09/06/2024]
Abstract
Coronavirus stands for a large family of viruses characterized by protruding spikes surrounding a lipidic membrane adorned with proteins. The present study explores the adhesion of transmissible gastroenteritis coronavirus (TGEV) particles on a variety of reference solid surfaces that emulate typical virus-surface interactions. Atomic force microscopy informs about trapping effectivity and the shape of the virus envelope on each surface, revealing that the deformation of TGEV particles spans from 20% to 50% in diameter. Given this large deformation range, experimental Langmuir isotherms convey an unexpectedly moderate variation in the adsorption-free energy, indicating a viral adhesion adaptability which goes beyond the membrane. The combination of an extended Helfrich theory and coarse-grained simulations reveals that, in fact, the envelope and the spikes present complementary adsorption affinities. While strong membrane-surface interaction lead to highly deformed TGEV particles, surfaces with strong spike attraction yield smaller deformations with similar or even larger adsorption-free energies.
Collapse
Affiliation(s)
- Aritz B. García‐Arribas
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ibáñez‐Freire
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Diego Carlero
- Departamento de Estructura de MacromoléculasCentro Nacional de Biotecnología CSICMadrid28049Spain
| | - Pablo Palacios‐Alonso
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Miguel Cantero‐Reviejo
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ares
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Guillermo López‐Polín
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Han Yan
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Yan Wang
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Soumya Sarkar
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Manish Chhowalla
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Hanna M. Oksanen
- Faculty of Biological and Environmental SciencesVijkki BiocenterUniversity of HelsinkiHelsinki00014Finland
| | - Jaime Martín‐Benito
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pedro J. de Pablo
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| | - Rafael Delgado‐Buscalioni
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| |
Collapse
|
2
|
Silva EP, Rechotnek F, Lima AMO, da Silva ACP, Sequinel T, Freitas CF, Martins AF, Muniz EC. Design and fabrication strategies of molybdenum disulfide-based nanomaterials for combating SARS-CoV-2 and other respiratory diseases: A review. BIOMATERIALS ADVANCES 2024; 163:213949. [PMID: 39002189 DOI: 10.1016/j.bioadv.2024.213949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/21/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Affiliation(s)
- Elisangela P Silva
- Department of Chemistry, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Fernanda Rechotnek
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | - Antônia M O Lima
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| | | | - Thiago Sequinel
- Faculty of Exact Sciences and Technology (FACET), Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Camila F Freitas
- Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Alessandro F Martins
- Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil; Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Paraná (UTFPR), Apucarana, PR, Brazil; Department of Chemistry, Pittsburg State University (PSU), Pittsburg, KS, USA.
| | - Edvani C Muniz
- Department of Chemistry, Federal University of Piauí (UFPI), Teresina, PI, Brazil; Department of Chemistry, State University of Maringá (UEM), Maringá, PR, Brazil
| |
Collapse
|
3
|
Sharma N, Chi CH, Dabur D, Tsai ACC, Wu HF. SnO 2-xN x based tpod nanostructure for SARS-CoV2 spike protein detection. ENVIRONMENTAL RESEARCH 2023; 234:116505. [PMID: 37406724 DOI: 10.1016/j.envres.2023.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
The worldwide spreading of severe acute respiratory syndrome SARS-CoV2 pandemic, a massive setback to every human being. In response to strategies actions against Covid-19 spreading many detection, prevention, and post-measures are being studied in large capacities. Association of SARS-CoV2 with ACE2 is well acknowledged and used for developing point-of-care detection kits. Recently, cases and studies have surfaced showing relation of ACE I/D polymorphism with spreading of SARS-CoV2 and highlighted a slip section towards detection and these studies show specificity with older males, high diabetes, and hypertension. To address the raised concern, we report synthesis of unique SnO2-xNx tpod nanostructure, showing affirmative attachment to both ACE1 and ACE2 efficiently. The attachment is examined in different ratios and studied with μ-Raman spectroscopy. The tpod nanostructure has served with its signature raman signals and used as probe for detection of SARS-CoV2 spike protein (S1). The linearity response for tpod raman signal at 630.4 cm-1 shows R2 0.9705, comparatively peak 1219.13 cm-1 show R2 0.9865 and calculated limit of detection of 35 nM.
Collapse
Affiliation(s)
- Nallin Sharma
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan; Jeenn Chwanq Enterprise Co. Ltd, No. 14, Dazhu Road, Kaohsiung, 833, Taiwan
| | - Chia-Hung Chi
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan
| | - Deepak Dabur
- International PhD Program for Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | | | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan; Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan; International PhD Program for Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
4
|
Roy S, Aastha, Deo KA, Dey K, Gaharwar AK, Jaiswal A. Nanobio Interface Between Proteins and 2D Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35753-35787. [PMID: 37487195 PMCID: PMC10866197 DOI: 10.1021/acsami.3c04582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/30/2023] [Accepted: 06/22/2023] [Indexed: 07/26/2023]
Abstract
Two-dimensional (2D) nanomaterials have significantly contributed to recent advances in material sciences and nanotechnology, owing to their layered structure. Despite their potential as multifunctional theranostic agents, the biomedical translation of these materials is limited due to a lack of knowledge and control over their interaction with complex biological systems. In a biological microenvironment, the high surface energy of nanomaterials leads to diverse interactions with biological moieties such as proteins, which play a crucial role in unique physiological processes. These interactions can alter the size, surface charge, shape, and interfacial composition of the nanomaterial, ultimately affecting its biological activity and identity. This review critically discusses the possible interactions between proteins and 2D nanomaterials, along with a wide spectrum of analytical techniques that can be used to study and characterize such interplay. A better understanding of these interactions would help circumvent potential risks and provide guidance toward the safer design of 2D nanomaterials as a platform technology for various biomedical applications.
Collapse
Affiliation(s)
- Shounak Roy
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Aastha
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Kaivalya A. Deo
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kashmira Dey
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Akhilesh K. Gaharwar
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States
- Interdisciplinary
Graduate Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843, United States
| | - Amit Jaiswal
- School
of Biosciences and Bioengineering, Indian
Institute of Technology, Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
5
|
Mukherjee S, Manna S, Som N, Dhara S. Organic-Inorganic Hybrid Nanocomposites for Nanotheranostics: Special Focus on Preventing Emerging Variants of SARS-COV-2. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023:1-15. [PMID: 37363138 PMCID: PMC10187951 DOI: 10.1007/s44174-023-00077-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/31/2023] [Accepted: 03/27/2023] [Indexed: 06/28/2023]
Abstract
The worldwide emerging cases of various respiratory viral diseases and the current escalation of novel coronavirus disease (COVID-19) make people considerably attentive to controlling these viruses through innovative methods. Most re-emerging respiratory diseases envelop RNA viruses that employ attachment between the virus and host cell to get an entry form using the host cell machinery. Emerging variants of COVD-19 also bring about a constant threat to public health as it has wide infectivity and can quickly spread to infect humans. This review focuses on insights into the current investigations to prevent the progression of incipient variants of Severe Acute Respiratory Syndrome Coronavirus (SARS-COV-2) along with similar enveloped RNA viruses that cause respiratory illness in humans and animals. Nanotheranostics is a trailblazing arena of nanomedicine that simultaneously helps prevent or treat diseases and diagnoses. Nanoparticle coating and nanofibers were extensively explored, preventing viral contaminations. Several studies have proven the virucidal activities of metal nanoparticles like copper, silver, and titanium against respiratory viral pathogens. Worldwide many researchers have shown surfaces coated with ionic nanoparticles like zinc or titanium act as potent antiviral agents against RNA viruses. Carbon nanotubes, quantum dots, silica nanoparticles (NPs), polymeric and metallic nanoparticles have also been explored in the field of nanotheranostics in viral detection. In this review, we have comprehensively discussed different types of metallic, ionic, organic nanoparticles and their hybrids showing substantial antiviral properties to stop the progression of the novel coronavirus disease focused on three key classes: prevention, diagnostics, and treatment.
Collapse
Affiliation(s)
- Sayan Mukherjee
- Biomaterials and Tissue Engineering Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Souvik Manna
- Clinical Microbiology & Antibiotic Research Laboratory, CSIR - Institute of Microbial Technology, Chandigarh, India
| | - Nivedita Som
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
6
|
Schultz JV, Tonel MZ, Martins MO, Fagan SB. Graphene oxide and flavonoids as potential inhibitors of the spike protein of SARS-CoV-2 variants and interaction between ligands: a parallel study of molecular docking and DFT. Struct Chem 2023; 34:1-11. [PMID: 36721714 PMCID: PMC9880933 DOI: 10.1007/s11224-023-02135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2022] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Nanocarriers allow the connection between biomolecules and other structures to enhance the treatment efficacy, through the biomolecule's properties to an existing drug, or to allow a better and specific delivery. Apigenin and orientin are biomolecules with excellent therapeutic properties that are proposed in the fight against COVID-19. Besides that, graphene oxide is a nanomaterial that exhibits antiviral activity and is used as a nanocarrier of several drugs. We evaluated in this work, through molecular docking, the binding affinity between these structures to the receptor-binding domain of spike protein of two coronavirus variants, Delta and Omicron. The results indicate that all the structures exhibit affinity with the two protein targets, with binding affinity values of -11.88 to -6.65 kcal/mol for the Delta variant and values of -9.58 to -13.20 kcal/mol for the Omicron variant, which is a successful value as found in the literature as a potential inhibitor of SARS-CoV-2 infection. Also, through first-principles calculations based on Density Functional Theory, the interaction of graphene oxide with the biomolecules apigenin and orientin occurred. The results exhibit weak binding energy, which indicates that physical adsorption occurs, with better results when the biomolecule is set in parallel to the nanomaterial due to attractive π-π staking. These results are conducive to the development of a nanocarrier.
Collapse
Affiliation(s)
- Júlia Vaz Schultz
- PPGNANO - Postgraduate Program in Nanoscience, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP 97010-032, Santa Maria, RS Brazil
| | - Mariana Zancan Tonel
- PPGNANO - Postgraduate Program in Nanoscience, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP 97010-032, Santa Maria, RS Brazil
| | - Mirkos Ortiz Martins
- PPGNANO - Postgraduate Program in Nanoscience, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP 97010-032, Santa Maria, RS Brazil
| | - Solange Binotto Fagan
- PPGNANO - Postgraduate Program in Nanoscience, Universidade Franciscana-UFN, Rua dos Andradas, 1614, ZIP 97010-032, Santa Maria, RS Brazil
| |
Collapse
|