1
|
Wang X, Shi G, Xu S, Sun Y, Qiu H, Wang Q, Han X, Zhang Q, Zhang T, Hu HY. Unravelling Immune-Inflammatory Responses and Lysosomal Adaptation: Insights from Two-Photon Excited Delayed Fluorescence Imaging. Adv Healthc Mater 2024; 13:e2304223. [PMID: 38407490 DOI: 10.1002/adhm.202304223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Two-photon excitation (TPE) microscopy with near-infrared (NIR) emission has emerged as a promising technique for deep-tissue optical imaging. Recent developments in fluorescence lifetime imaging with long-lived emission probes have further enhanced the spatial resolution and precision of fluorescence imaging, especially in complex systems with short-lived background signals. In this study, two innovative lysosome-targeting probes, Cz-NA and tCz-NA, are introduced. These probes offer a combination of advantages, including TPE (λex = 880 nm), NIR emission (λem = 650 nm), and thermally activated delayed fluorescence (TADF) with long-lived lifetimes (1.05 and 1.71 µs, respectively). These characteristics significantly improve the resolution and signal-to-noise ratio in deep-tissue imaging. By integrating an acousto-optic modulator (AOM) device with TPE microscopy, the authors successfully applied Cz-NA in two-photon excited delayed fluorescence (TPEDF) imaging to track lysosomal adaptation and immune responses to inflammation in mice. This study sheds light on the relationship between lysosome tubulation, innate immune responses, and inflammation in vivo, providing valuable insights for the development of autofluorescence-free molecular probes in the future.
Collapse
Affiliation(s)
- Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shengnan Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuansheng Sun
- Flourescence Products, ISS, Inc., 1602 Newton Drive, Champaign, IL 61822, USA
| | - Hailin Qiu
- Department of Fluorescence Test Technology, Orient KOJI Ltd., Tianjin, 300122, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
2
|
Chen X, Chen J, Wang S, Yu S, Liu Z, Zeng X. Development of a Coumarin-derived Fluorescent Probe for Detection of HOCl and its Application in Cells and Zebrafish. J Fluoresc 2024:10.1007/s10895-024-03642-8. [PMID: 38647962 DOI: 10.1007/s10895-024-03642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 04/25/2024]
Abstract
We have prepared a simple, universal and efficient coumarin-derived fluorescent probe (XDS1) to detecting HOCl. The experimental findings revealed that the introduction of HOCl produced an obvious quenching effect on the probe with high selectivity and sensitivity. The calculated limit of detection (LOD) was as low as 0.02 μM. Furthermore, an impressive response time of less than 10 s was observed when XDS1 detecting HOCl. Importantly, the probe XDS1 exhibited negligible cytotoxicity, thereby facilitating its application for imaging HOCl within biological environment. The probe XDS1 had been successfully used for specific detection in cells.
Collapse
Affiliation(s)
- Xin Chen
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Jie Chen
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Shanshan Wang
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Shihua Yu
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Zhigang Liu
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, People's Republic of China.
| | - Xiaodan Zeng
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Mañucat-Tan NB, Chowdhury A, Cataldi R, Abdullah RZ, Kumita JR, Wyatt AR. Hypochlorite-induced oxidation promotes aggregation and reduces toxicity of amyloid beta 1-42. Redox Biol 2023; 63:102736. [PMID: 37216700 DOI: 10.1016/j.redox.2023.102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Exacerbated hypochlorite (OCl-) production is linked to neurodegenerative processes, but there is growing evidence that lower levels of hypochlorite activity are important to protein homeostasis. In this study we characterise the effects of hypochlorite on the aggregation and toxicity of amyloid beta peptide 1-42 (Aβ1-42), a major component of amyloid plaques that form in the brain in Alzheimer's disease. Our results demonstrate that treatment with hypochlorite promotes the formation of Aβ1-42 assemblies ≥100 kDa that have reduced surface exposed hydrophobicity compared to the untreated peptide. This effect is the result of the oxidation of Aβ1-42 at a single site as determined by mass spectrometry analysis. Although treatment with hypochlorite promotes the aggregation of Aβ1-42, the solubility of the peptide is enhanced and amyloid fibril formation is inhibited as assessed by filter trap assay, thioflavin T assay and transmission electron microscopy. The results of in vitro assays using SH-SY5Y neuroblastoma cells show that pre-treatment of Aβ1-42 with a sub-stoichiometric amount of hypochlorite substantially reduces its toxicity. The results of flow cytometry analysis and internalisation assays indicate that hypochlorite-induced modification of Aβ1-42 reduces its toxicity via at least two-distinct mechanism, reducing the total binding of Aβ1-42 to the surface of cells and facilitating the cell surface clearance of Aβ1-42 to lysosomes. Our data is consistent with a model in which tightly regulated production of hypochlorite in the brain is protective against Aβ-induced toxicity.
Collapse
Affiliation(s)
- Noralyn B Mañucat-Tan
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, SA, Australia, 5048
| | - Ashfaq Chowdhury
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rodrigo Cataldi
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rafaa Zeineddine Abdullah
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, NSW, Australia, 2500
| | - Janet R Kumita
- Yusef Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK; Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| | - Amy R Wyatt
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, SA, Australia, 5048.
| |
Collapse
|
4
|
Liang F, Jiang J, Yang X, Zhang G, Zhou J, Han J, Geng Y, Wang Z. Si-rhodamine fluorescent probe for monitoring of hypochlorous acid in the brains of mice afflicted with neuroinflammation. Chem Commun (Camb) 2023; 59:1357-1360. [PMID: 36649118 DOI: 10.1039/d2cc06475h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroinflammation leads to a persistent oxidative stress in the brain, and is closely related to the pathology of various neurological disorders. Hypochlorous acid (HClO) is a reactive oxygen species (ROS) that, at high levels, can cause brain tissue damage and neurogenic apoptosis. Herein, we designed and synthesized a silicon-rhodamine (SiR)-based formohydrazide (FH)-containing fluorescent probe, denoted as SiR-FH, for sensing HClO. This probe showed good selectivity, rapid response and high sensitivity. SiR-FH was successfully used to detect endogenous and exogenous HClO in living cells. Moreover, SiR-FH realized real-time monitoring of change in HClO flux in the brains of mice with LPS-induced neuroinflammation. The probe provides a practical tool for the monitoring of oxidative stress related to neuroinflammation.
Collapse
Affiliation(s)
- Fanghui Liang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jian Jiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinyue Yang
- Institute of Agricultural Quality Standards and Testing Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiaying Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiahao Han
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yujie Geng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|