1
|
Li H, Li C, Fu C, Wang Y, Liang T, Wu H, Wu C, Wang C, Sun T, Liu S. Innovative nanoparticle-based approaches for modulating neutrophil extracellular traps in diseases: from mechanisms to therapeutics. J Nanobiotechnology 2025; 23:88. [PMID: 39915767 PMCID: PMC11800495 DOI: 10.1186/s12951-025-03195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/02/2025] [Indexed: 02/11/2025] Open
Abstract
Neutrophil extracellular traps (NETs) participate in both host defense and the pathogenesis of various diseases, such as infections, thrombosis, and tumors. While they help capture and eliminate pathogens, NETs' excessive or dysregulated formation can lead to tissue damage and disease progression. Therapeutic strategies targeting NET modulation have shown potential, but challenges remain, particularly in achieving precise drug delivery and maintaining drug stability. Nanoparticle (NP)-based drug delivery systems offer innovative solutions for overcoming the limitations of conventional therapies. This review explores the biological mechanisms of NET formation, their interactions with NPs, and the therapeutic applications of NP-based drug delivery systems for modulating NETs. We discuss how NPs can be designed to either promote or inhibit NET formation and provide a comprehensive analysis of their potential in treating NET-related diseases. Additionally, we address the current challenges and future prospects for NP-based therapies in NET research, aiming to bridge the gap between nanotechnology and NET modulation for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Haisong Li
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
- Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Can Li
- Department of Hematology, The Second Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Cong Fu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yizhuo Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tingting Liang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Haitao Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chenxi Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Shuhan Liu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
| |
Collapse
|
2
|
Pálos V, Nagy KS, Pázmány R, Juriga-Tóth K, Budavári B, Domokos J, Szabó D, Zsembery Á, Jedlovszky-Hajdu A. Electrospun polysuccinimide scaffolds containing different salts as potential wound dressing material. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:781-796. [PMID: 38979523 PMCID: PMC11228618 DOI: 10.3762/bjnano.15.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
In this research, we applied electrospinning to create a two-component biodegradable polymeric scaffold containing polysuccinimide (PSI) and antibacterial salts. Antibacterial agents for therapeutical purposes mostly contain silver ions which are associated with high environmental impact and, in some cases, may cause undesired immune reactions. In our work, we prepared nanofibrous systems containing antibacterial and tissue-regenerating salts of zinc acetate or strontium nitrate in different concentrations, whose structures may be suitable for developing biomedical wound dressing systems in the future. Several experiments have been conducted to optimize the physicochemical, mechanical, and biological properties of the scaffolds developed for application as wound dressings. The scaffold systems obtained by PSI synthesis, salt addition, and fiber formation were first investigated by scanning electron microscopy. In almost all cases, different salts caused a decrease in the fiber diameter of PSI polymer-based systems (<500 nm). Fourier-transform infrared spectroscopy was applied to verify the presence of salts in the scaffolds and to determine the interaction between the salt and the polymer. Another analysis, energy-dispersive X-ray spectroscopy, was carried out to determine strontium and zinc atoms in the scaffolds. Our result showed that the salts influence the mechanical properties of the polymer scaffold, both in terms of specific load capacity and relative elongation values. According to the dissolution experiments, the whole amount of strontium nitrate was dissolved from the scaffold in 8 h; however, only 50% of the zinc acetate was dissolved. In addition, antibacterial activity tests were performed with four different bacterial strains relevant to skin surface injuries, leading to the appearance of inhibition zones around the scaffold discs in most cases. We also investigated the potential cytotoxicity of the scaffolds on human tumorous and healthy cells. Except for the ones containing zinc acetate salt, the scaffolds are not cytotoxic to either tumor or healthy cells.
Collapse
Affiliation(s)
- Veronika Pálos
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Krisztina S Nagy
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Rita Pázmány
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Krisztina Juriga-Tóth
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Bálint Budavári
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Judit Domokos
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Dóra Szabó
- Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Ákos Zsembery
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - Angela Jedlovszky-Hajdu
- Laboratory of Nanochemistry, Institute of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| |
Collapse
|
3
|
Trinh LT, Lim S, Lee HJ, Kim IT. Development of Efficient Sodium Alginate/Polysuccinimide-Based Hydrogels as Biodegradable Acetaminophen Delivery Systems. Gels 2023; 9:980. [PMID: 38131966 PMCID: PMC10743301 DOI: 10.3390/gels9120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Efficient drug delivery systems are essential for improving patient outcomes. Acetaminophen (AP), which is a kind of oral administration, is a commonly used pain reliever and fever reducer. However, oral administration carries various health risks, especially overdose and frequent use; for instance, AP is administered approximately 4 times per day. Therefore, the aim of this study is to develop an efficient delivery system for once-daily administration by combining sodium alginate and polysuccinimide (PSI) hydrogels to delay the release of analgesic AP. PSI is a biodegradable polymer that can be used safely and effectively in drug delivery systems because it is eliminated by hydrolysis in the intestine. The use of PSI also improves the mechanical properties of hydrogels and prolongs drug release. In this study, hydrogel characterizations such as mechanical properties, drug dissolution ability, and biodegradability were measured to evaluate the hydrolysis of PSI in the intestine. Based on the results, hydrogels could be designed to improve the structural mechanical properties and to allow the drug to be completely dissolved, and eliminated from the body through PSI hydrolysis in the intestines. In addition, the release profiles of AP in the hydrogels were evaluated, and the hydrogels provided continuous release of AP for 24 h. Our research suggests that sodium alginate/PSI hydrogels can potentially serve as biodegradable delivery systems for AP. These findings may have significant implications for developing efficient drug delivery systems for other classes of drugs.
Collapse
Affiliation(s)
| | | | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Republic of Korea; (L.T.T.); (S.L.)
| | - Il Tae Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Republic of Korea; (L.T.T.); (S.L.)
| |
Collapse
|
4
|
Feldmann A, Nitschke Y, Linß F, Mulac D, Stücker S, Bertrand J, Buers I, Langer K, Rutsch F. Improved Reversion of Calcifications in Porcine Aortic Heart Valves Using Elastin-Targeted Nanoparticles. Int J Mol Sci 2023; 24:16471. [PMID: 38003660 PMCID: PMC10671589 DOI: 10.3390/ijms242216471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Calcified aortic valve disease in its final stage leads to aortic valve stenosis, limiting cardiac function. To date, surgical intervention is the only option for treating calcific aortic valve stenosis. This study combined controlled drug delivery by nanoparticles (NPs) and active targeting by antibody conjugation. The chelating agent diethylenetriaminepentaacetic acid (DTPA) was covalently bound to human serum albumin (HSA)-based NP, and the NP surface was modified using conjugating antibodies (anti-elastin or isotype IgG control). Calcification was induced ex vivo in porcine aortic valves by preincubation in an osteogenic medium containing 2.5 mM sodium phosphate for five days. Valve calcifications mainly consisted of basic calcium phosphate crystals. Calcifications were effectively resolved by adding 1-5 mg DTPA/mL medium. Incubation with pure DTPA, however, was associated with a loss of cellular viability. Reversal of calcifications was also achieved with DTPA-coupled anti-elastin-targeted NPs containing 1 mg DTPA equivalent. The addition of these NPs to the conditioned media resulted in significant regression of the valve calcifications compared to that in the IgG-NP control without affecting cellular viability. These results represent a step further toward the development of targeted nanoparticular formulations to dissolve aortic valve calcifications.
Collapse
Affiliation(s)
- Anja Feldmann
- Department of General Pediatrics, Muenster University Children’s Hospital, D-48149 Muenster, Germany; (A.F.); (Y.N.); (I.B.)
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
| | - Yvonne Nitschke
- Department of General Pediatrics, Muenster University Children’s Hospital, D-48149 Muenster, Germany; (A.F.); (Y.N.); (I.B.)
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
| | - Franziska Linß
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, D-48149 Muenster, Germany; (D.M.); (K.L.)
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, D-48149 Muenster, Germany; (D.M.); (K.L.)
| | - Sina Stücker
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany
| | - Jessica Bertrand
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany
| | - Insa Buers
- Department of General Pediatrics, Muenster University Children’s Hospital, D-48149 Muenster, Germany; (A.F.); (Y.N.); (I.B.)
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, D-48149 Muenster, Germany; (D.M.); (K.L.)
| | - Frank Rutsch
- Department of General Pediatrics, Muenster University Children’s Hospital, D-48149 Muenster, Germany; (A.F.); (Y.N.); (I.B.)
- International Network of Ectopic Calcification (INTEC), 9000 Ghent, Belgium; (F.L.); (S.S.); (J.B.)
| |
Collapse
|
5
|
Chen X, Moonshi SS, Nguyen NT, Ta HT. Preparation of protein-loaded nanoparticles based on poly(succinimide)-oleylamine for sustained protein release: a two-step nanoprecipitation method. NANOTECHNOLOGY 2023; 35:055101. [PMID: 37863070 DOI: 10.1088/1361-6528/ad0592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
Currently, the treatment for acute disease encompasses the use of various biological drugs (BDs). However, the utilisation of BDs is limited due to their rapid clearance and non-specific accumulation in unwanted sites, resulting in a lack of therapeutic efficacy together with adverse effects. While nanoparticles are considered good candidates to resolve this problem, some available polymeric carriers for BDs were mainly designed for long-term sustained release. Thus, there is a need to explore new polymeric carriers for the acute disease phase that requires sustained release of BDs over a short period, for example for thrombolysis and infection. Poly(succinimide)-oleylamine (PSI-OA), a biocompatible polymer with a tuneable dissolution profile, represents a promising strategy for loading BDs for sustained release within a 48-h period. In this work, we developed a two-step nanoprecipitation method to load the model protein (e.g. bovine serum albumin and lipase) on PSI-OA. The characteristics of the nanoparticles were assessed based on various loading parameters, such as concentration, stirring rate, flow rate, volume ratio, dissolution and release of the protein. The optimised NPs displayed a size within 200 nm that is suitable for vasculature delivery to the target sites. These findings suggest that PSI-OA can be employed as a carrier for BDs for applications that require sustained release over a short period.
Collapse
Affiliation(s)
- Xiangxun Chen
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Nam-Trung Nguyen
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Brisbane, Queensland 4111, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
6
|
Adelnia H, Moonshi SS, Wu Y, Bulmer AC, Mckinnon R, Fastier-Wooller JW, Blakey I, Ta HT. A Bioactive Disintegrable Polymer Nanoparticle for Synergistic Vascular Anticalcification. ACS NANO 2023; 17:18775-18791. [PMID: 37650798 DOI: 10.1021/acsnano.3c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Although poly(aspartic acid) (PASP), a strong calcium chelating agent, may be potentially effective in inhibition of vascular calcification, its direct administration may lead to side effects. In this study, we employed polysuccinimide, a precursor of PASP, to prepare targeted polysuccinimide-based nanoparticles (PSI NPs) that not only acted as a prodrug but also functioned as a carrier of additional therapeutics to provide powerful synergistic vascular anticalcification effect. This paper shows that chemically modified PSI-NPs can serve as effective nanocarriers for loading of hydrophobic drugs, in addition to anticalcification and antireactive oxygen species (anti-ROS) activities. Curcumin (Cur), with high loading efficiency, was encapsulated into the NPs. The NPs were stable for 16 h in physiological conditions and then slowly dissolved/hydrolyzed to release the therapeutic PASP and the encapsulated drug. The drug release profile was found to be in good agreement with the NP dissolution profile such that complete release occurred after 48 h at physiological conditions. However, under acidic conditions, the NPs were stable, and Cur cumulative release reached only 30% after 1 week. Though highly effective in the prevention of calcium deposition, PSI NPs could not prevent the osteogenic trans-differentiation of vascular smooth muscle cells (VSMCs). The presence of Cur addressed this problem. It not only further reduced ROS level in macrophages but also prevented osteogenic differentiation of VSMCs in vitro. The NPs were examined in vivo in a rat model of vascular calcification induced by kidney failure through an adenine diet. The inclusion of Cur and PSI NPs combined the therapeutic effects of both. Cur-loaded NPs significantly reduced calcium deposition in the aorta without adversely affecting bone integrity or noticeable side effects/toxicity as examined by organ histological and serum biochemistry analyses.
Collapse
Affiliation(s)
- Hossein Adelnia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Andrew C Bulmer
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland 4222, Australia
| | - Ryan Mckinnon
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland 4222, Australia
| | | | - Idriss Blakey
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|