1
|
Li X, Zhou S, Deng Z, Liu B, Gao B. Corn-inspired high-density plasmonic metal-organic frameworks microneedles for enhanced SERS detection of acetaminophen. Talanta 2024; 278:126463. [PMID: 38924988 DOI: 10.1016/j.talanta.2024.126463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Effective monitoring of acetaminophen (APAP) dosage is crucial for preventing antipyretic abuse, ensuring therapeutic efficacy, and minimizing toxic effects. However, existing self-monitoring methods are limited. In this study, we designed a plasmonic microneedle (MN) sensor for real-time nondestructive monitoring of acetaminophen levels in dermal interstitial fluid (ISF) by employing a handheld Raman spectrometer. The fabricated MN sensor incorporated a high-density plasmonic MOFs known as HDPM, which unique structure of large specific surface area, specific pore structure as well as high density gold nanospheres packing enabled the excellent performance of selective ISF drug enrichment and surface-enhanced Raman scattering (SERS). The maximum electric field enhancement factor of the HDPM nanostructure could be calculated as 5.73 × 107. The developed HDPM@MNs was characterized with a core-shell type "soft on the outside and rigid on the inside" structure, which exhibited sufficient hardness and flexibility to penetrate the dermal tissue with little damage, and robust SERS enhancement effect in APAP detection without any interfering peaks. Through a hydrogel drug simulation experiment, the sensor demonstrated robust capabilities for acetaminophen enrichment and monitoring, exhibiting excellent stability and repeatability. The quantitative detection window spanned from 1 to 100 μM, with a low detection limit reaching 0.45 μM. Furthermore, by monitoring the concentration of acetaminophen in the interstitial fluid of rat skin at different doses and for different administration times, the HDPM@MNs can be used to determine the pharmacokinetics of acetaminophen in rats and the physiological characteristics associated with various dosage regimens. This work not only holds promise for drug monitoring but also provides a novel approach for nondestructive monitoring of other crucial low-abundance physiological markers.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Shu Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Zhewen Deng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Bing Liu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China.
| | - Bingbing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
2
|
Sarker S, Wang J, Shah SA, Jewell CM, Rand-Yadin K, Janowski M, Walczak P, Liang Y, Sochol RD. GEOMETRIC DETERMINANTS OF CELL VIABILITY FOR 3D-PRINTED HOLLOW MICRONEEDLE ARRAY-MEDIATED DELIVERY. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS 2024; 2024:429-432. [PMID: 38476775 PMCID: PMC10932570 DOI: 10.1109/mems58180.2024.10439381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
A wide range of emerging biomedical applications and clinical interventions rely on the ability to deliver living cells via hollow, high-aspect-ratio microneedles. Recently, microneedle arrays (MNA) have gained increasing interest due to inherent benefits for drug delivery; however, studies exploring the potential to harness such advantages for cell delivery have been impeded due to the difficulties in manufacturing high-aspect-ratio MNAs suitable for delivering mammalian cells. To bypass these challenges, here we leverage and extend our previously reported hybrid additive manufacturing (or "three-dimensional (3D) printing) strategy-i.e., the combined the "Vat Photopolymerization (VPP)" technique, "Liquid Crystal Display (LCD)" 3D printing with "Two-Photon Direct Laser Writing (DLW)"-to 3D print hollow MNAs that are suitable for cell delivery investigations. Specifically, we 3D printed four sets of 650 μm-tall MNAs corresponding to needle-specific inner diameters (IDs) of 25 μm, 50 μm, 75 μm, and 100 μm, and then examined the effects of these MNAs on the post-delivery viability of both dendritic cells (DCs) and HEK293 cells. Experimental results revealed that the 25 μm-ID case led to a statistically significant reduction in post-MNA-delivery cell viability for both cell types; however, MNAs with needle-specific IDs ≥ 50 μm were statistically indistinguishable from one another as well as conventional 32G single needles, thereby providing an important benchmark for MNA-mediated cell delivery.
Collapse
Affiliation(s)
- Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Jinghui Wang
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | - Miroslaw Janowski
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Piotr Walczak
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yajie Liang
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|