1
|
Holman A, Elsaigh R, Elsaigh R, Rodriguez A, Kurouski D. Dyed Hair and Swimming Pools: The Influence of Chlorinated and Nonchlorinated Agitated Water on Surface-Enhanced Raman Spectroscopic Analysis of Artificial Dyes on Hair. ACS OMEGA 2024; 9:45263-45269. [PMID: 39554449 PMCID: PMC11561636 DOI: 10.1021/acsomega.4c06734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Chlorine, commonly found in pools and tap water, presents an intriguing concern in forensic hair analysis due to its sources and composition. Current forensic analysis involves optical microscopy which is subjected to advanced training where even multiple experts can deliver opposing conclusions for the same hair sample. Despite challenges in traditional analysis methods, emerging techniques like surface-enhanced Raman spectroscopy (SERS) offer promising solutions, showcasing success even in harsh environments like prolonged sunlight or stagnant water immersion. This study employs partial least-squares discriminant analysis (PLS-DA) to evaluate SERS efficacy in identifying dyes on hair immersed in chlorinated and distilled moving water for up to eight weeks. Our results demonstrated that one semipermanent colorant overwhelmingly influenced Raman signals in dyed hair exposed to both chlorinated and nonchlorinated water over an eight-week period, masking other colorants' spectral signatures. Despite one colorant's dominance, PLS-DA identified underlying colorants and their exposure conditions, suggesting persistent, unique interactions between original colorants and the environment. This study demonstrates the high potential for PLS-DA-based identifications of dyes on hair using SERS.
Collapse
Affiliation(s)
- Aidan
P. Holman
- Interdisciplinary
Faculty of Toxicology Program, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Roa Elsaigh
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Ragd Elsaigh
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Axell Rodriguez
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Nanomedicine
Program, College of Science, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| |
Collapse
|
2
|
Juárez ID, Kurouski D. Near-infrared excitation Raman spectroscopy of colored fabric contaminated with body fluids. Sci Rep 2024; 14:19080. [PMID: 39154052 PMCID: PMC11330518 DOI: 10.1038/s41598-024-70016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Confirmatory identification of dyes in the physical pieces of evidence, such as hair and fabric, is critically important in forensics. This information can be used to demonstrate the link between a person of interest and a crime scene. High performance liquid chromatography is broadly used for dye analysis. However, this technique is destructive and laborious. This problem can be overcome by near-Infrared excitation Raman spectroscopy (NIeRS), non-invasive and non-destructive technique that can be used to determine chemical structure of highly fluorescent dyes. Analyzed fabric materials often possess body fluid stains, which may obscure the accuracy of NIeRS-based identification of dyes. In this study, we investigate the extent to which fabric contamination with body fluids can alter the accuracy of NIeRS. Our results showed that NIeRS coupled with partial-least squared discriminant analysis (PLS-DA) enabled on average 97.6% accurate identification of dyes on fabric contaminated with dry blood, urine and semen. We also found that NIeRS could be used to identify blood, urine and semen on such fabric with 99.4% accuracy. Furthermore, NIeRS could be used to differentiate between wet and dry blood, as well as reveal the presence of blood on washed fabric. These results indicate that NIeRS coupled with PLS-DA could be used as a robust and reliable analytical approach in forensic analysis of fabric.
Collapse
Affiliation(s)
- Isaac D Juárez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
Holman AP, Peterson M, Linhart E, Kurouski D. Using surface-enhanced Raman spectroscopy to probe artificial dye degradation on hair buried in multiple soils for up to eight weeks. Sci Rep 2024; 14:6469. [PMID: 38499595 PMCID: PMC10948827 DOI: 10.1038/s41598-024-57147-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
The discovery of clandestine burials poses unique challenges for forensic specialists, requiring diverse expertise to analyze remains in various states. Bones, teeth, and hair often endure the test of time, with hair particularly exposed to the external environment. While existing studies focus on the degradation of virgin hair influenced by soil pH and decomposition fluids, the interaction between artificial dyes on hair and soil remains underexplored. This paper introduces a novel approach to forensic hair analysis that is based on high-throughput, nondestructive, and non-invasive surface-enhanced Raman spectroscopy (SERS) and machine learning. Using this approach, we investigated the reliability of the detection and identification of artificial dyes on hair buried in three distinct soil types for up to eight weeks. Our results demonstrated that SERS enabled the correct prediction of 97.9% of spectra for five out of the eight dyes used within the 8 weeks of exposure. We also investigated the extent to which SERS and machine learning can be used to predict the number of weeks since burial, as this information may provide valuable insights into post-mortem intervals. We found that SERS enabled highly accurate exposure intervals to soils for specific dyes. The study underscores the high achievability of SERS in extrapolating colorant information from dyed hairs buried in diverse soils, with the suggestion that further model refinement could enhance its reliability in forensic applications.
Collapse
Affiliation(s)
- Aidan P Holman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Mackenzi Peterson
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Emily Linhart
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Institute for Advancing Health Through Agriculture, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Peterson M, Kurouski D. Non-Destructive Identification of Dyes on Fabric Using Near-Infrared Raman Spectroscopy. Molecules 2023; 28:7864. [PMID: 38067594 PMCID: PMC10708237 DOI: 10.3390/molecules28237864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 05/05/2024] Open
Abstract
Fabric is a commonly found piece of physical evidence at most crime scenes. Forensic analysis of fabric is typically performed via microscopic examination. This subjective approach is primarily based on pattern recognition and, therefore, is often inconclusive. Most of the fabric material found at crime scenes is colored. One may expect that a confirmatory identification of dyes can be used to enhance the reliability of the forensic analysis of fabric. In this study, we investigated the potential of near-infrared Raman spectroscopy (NIRS) in the confirmatory, non-invasive, and non-destructive identification of 15 different dyes on cotton. We found that NIRS was able to resolve the vibrational fingerprints of all 15 colorants. Using partial-squared discriminant analysis (PLS-DA), we showed that NIRS enabled ~100% accurate identification of dyes based on their vibrational signatures. These findings open a new avenue for the robust and reliable forensic analysis of dyes on fabric directly at crime scenes. Main conclusion: a hand-held Raman spectrometer and partial least square discriminant analysis (PLS-DA) approaches enable highly accurate identification of dyes on fabric.
Collapse
Affiliation(s)
- Mackenzi Peterson
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA;
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|