1
|
Hao J, Du L, He Y, Wu C. Bioceramic Surface Topography Regulating Immune Osteogenesis. BME FRONTIERS 2025; 6:0089. [PMID: 39850150 PMCID: PMC11756600 DOI: 10.34133/bmef.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/25/2025] Open
Abstract
Objective: This study aims to clarify the effects of bioceramic interface cues on macrophages. Impact Statement: Recently, there have been many researches exploring the effects of interface topography cues on macrophage polarization and cytokine secretion. However, the effects and underlying mechanisms of bioceramic interface cues on macrophages still need exploring. This study provides insights into the effects of bioceramic micro-groove surface structures on macrophages. Introduction: With the development of bone tissue engineering methods, bioceramics have been used for bone repair. After the implantation of bioceramics, innate immune response that occurs at the interface of materials can deeply influence the subsequent inflammation and bone regeneration progress. Therefore, the exploration and regulation of immune response of the bioceramic interface will be beneficial to promote the bone regeneration effects. Methods: In this study, bioceramics with micro-groove structures on the surface are fabricated by digital light processing 3-dimensional printing technology. Then, micro-groove structures with different spacings (0, 25, 50, and 75 μm) are prepared separately to explore the effects on macrophages. Results: The large spacing micro-groove structure can promote the M2 polarization and osteoinductive cytokine secretion of macrophage. The reason is that the large spacing micro-groove structure can induce directional arrangement of macrophage so as to change the phenotype and cytokine secretion. Further researches show that macrophage of the large spacing micro-groove structure can promote the osteogenic differentiation of bone mesenchymal stem cells, which can benefit osteogenesis and osteointegration. Conclusion: This study offers an effective and application potential method for bone repair.
Collapse
Affiliation(s)
- Jianxin Hao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering,
University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin Du
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering,
University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuening He
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering,
University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
2
|
Zhang P, Zhou Q, He R. Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6092. [PMID: 39769691 PMCID: PMC11678146 DOI: 10.3390/ma17246092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.%, and 40 vol.%) were designed, 3D-printed, and characterized. The effects of structure and porosity on the morphology, mechanical properties, and in vitro biocompatibility properties of the HAp scaffolds were studied and compared with each other. Interestingly, the HAp scaffold with a porosity of 80 vol.% and a TPMS structure had the best combination of compressive strength and in vitro biocompatibility, and demonstrated a great biomedical application potential for bone repair. We hope this study can provide a reference for the application and development of HAp scaffolds in the field of bone repair engineering.
Collapse
Affiliation(s)
- Peng Zhang
- School of Management, Beijing Institute of Technology, Beijing 100081, China;
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China;
| | - Qing Zhou
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China;
| | - Rujie He
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China;
| |
Collapse
|
3
|
Zhou L, Zhang C, Shi T, Wu D, Chen H, Han J, Chen D, Lin J, Liu W. Functionalized 3D-printed GelMA/Laponite hydrogel scaffold promotes BMSCs recruitment through osteoimmunomodulatory enhance osteogenic via AMPK/mTOR signaling pathway. Mater Today Bio 2024; 29:101261. [PMID: 39381262 PMCID: PMC11460517 DOI: 10.1016/j.mtbio.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
The migration and differentiation of bone marrow mesenchymal stem cells (BMSCs) play crucial roles in bone repair processes. However, conventional scaffolds often lack of effectively inducing and recruiting BMSCs. In our study, we present a novel approach by introducing a 3D-bioprinted scaffold composed of hydrogels, with the addition of laponite to the GelMA solution, aimed at enhancing scaffold performance. Both in vivo and in vitro experiments have confirmed the outstanding biocompatibility of the scaffold. Furthermore, for the first time, Apt19s has been chemically modified onto the surface of the hydrogel scaffold, resulting in a remarkable enhancement in the migration and adhesion of BMSCs. Moreover, the scaffold has demonstrated robust osteogenic differentiation capability in both in vivo and in vitro environments. Additionally, the hydrogel scaffold has shown the ability to induce the polarization of macrophages from M1 to M2, thereby facilitating the osteogenic differentiation of BMSCs via the bone immune pathway. Through RNA-seq analysis, it has been revealed that macrophages regulate the osteogenic differentiation of BMSCs through the AMPK/mTOR signaling pathway. In summary, the functionalized GelMA/Laponite scaffold offers a cost-effective approach for tailored in situ bone regeneration.
Collapse
Affiliation(s)
- Linquan Zhou
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Chengcheng Zhang
- The School of Health, Fujian Medical University, Fuzhou, 350000, China
| | - Tengbin Shi
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Dingwei Wu
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Huina Chen
- The School of Health, Fujian Medical University, Fuzhou, 350000, China
| | - Jiaxin Han
- The School of Health, Fujian Medical University, Fuzhou, 350000, China
| | - Dehui Chen
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350000, China
| | - Wenge Liu
- Fujian Medical University Union Hospital, Fuzhou, 350000, China
| |
Collapse
|
4
|
Elshazly N, Nasr FE, Hamdy A, Saied S, Elshazly M. Advances in clinical applications of bioceramics in the new regenerative medicine era. World J Clin Cases 2024; 12:1863-1869. [PMID: 38660540 PMCID: PMC11036528 DOI: 10.12998/wjcc.v12.i11.1863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/31/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
In this editorial, we comment on the hard and soft tissue applications of different ceramic-based scaffolds prepared by different mechanisms such as 3D printing, sol-gel, and electrospinning. The new concept of regenerative medicine relies on biomaterials that can trigger in situ tissue regeneration and stem cell recruitment at the defect site. A large percentage of these biomaterials is ceramic-based as they provide the essential requirements of biomaterial principles such as tailored multisize porosity, antibacterial properties, and angiogenic properties. All these previously mentioned properties put bioceramics on top of the hierarchy of biomaterials utilized to stimulate tissue regeneration in soft and hard tissue wounds. Multiple clinical applications registered the use of these materials in triggering soft tissue regeneration in healthy and diabetic patients such as bioactive glass nanofibers. The results were promising and opened new frontiers for utilizing these materials on a larger scale. The same results were mentioned when using different forms and formulas of bioceramics in hard defect regeneration. Some bioceramics were used in combination with other polymers and biological scaffolds to improve their regenerative and mechanical properties. All this progress will enable a larger scale of patients to receive such services with ease and decrease the financial burden on the government.
Collapse
Affiliation(s)
- Noha Elshazly
- Tissue Engineering Laboratory, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
| | - Fayza Eid Nasr
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Ayat Hamdy
- Tissue Engineering Laboratory, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
- Public Dental Clinic, Central Administration of Dentistry, Ministry of Health and Population, Alexandria 21554, Egypt
| | - Safa Saied
- Tissue Engineering Laboratory, Faculty of Dentistry, Alexandria University, Alexandria 21526, Egypt
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Mohamed Elshazly
- Department of Surgery, Faculty of Veterinary Medicine, Alexandria 21526, Egypt
| |
Collapse
|
5
|
Tanvir MAH, Khaleque MA, Kim GH, Yoo WY, Kim YY. The Role of Bioceramics for Bone Regeneration: History, Mechanisms, and Future Perspectives. Biomimetics (Basel) 2024; 9:230. [PMID: 38667241 PMCID: PMC11048714 DOI: 10.3390/biomimetics9040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoporosis is a skeletal disorder marked by compromised bone integrity, predisposing individuals, particularly older adults and postmenopausal women, to fractures. The advent of bioceramics for bone regeneration has opened up auspicious pathways for addressing osteoporosis. Research indicates that bioceramics can help bones grow back by activating bone morphogenetic protein (BMP), mitogen-activated protein kinase (MAPK), and wingless/integrated (Wnt)/β-catenin pathways in the body when combined with stem cells, drugs, and other supports. Still, bioceramics have some problems, such as not being flexible enough and prone to breaking, as well as difficulties in growing stem cells and discovering suitable supports for different bone types. While there have been improvements in making bioceramics better for healing bones, it is important to keep looking for new ideas from different areas of medicine to make them even better. By conducting a thorough scrutiny of the pivotal role bioceramics play in facilitating bone regeneration, this review aspires to propel forward the rapidly burgeoning domain of scientific exploration. In the end, this appreciation will contribute to the development of novel bioceramics that enhance bone regrowth and offer patients with bone disorders alternative treatments.
Collapse
Affiliation(s)
| | | | | | | | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.); (W.-Y.Y.)
| |
Collapse
|
6
|
Yuan W, Ferreira LDAQ, Yu B, Ansari S, Moshaverinia A. Dental-derived stem cells in tissue engineering: the role of biomaterials and host response. Regen Biomater 2023; 11:rbad100. [PMID: 38223292 PMCID: PMC10786679 DOI: 10.1093/rb/rbad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 01/16/2024] Open
Abstract
Dental-derived stem cells (DSCs) are attractive cell sources due to their easy access, superior growth capacity and low immunogenicity. They can respond to multiple extracellular matrix signals, which provide biophysical and biochemical cues to regulate the fate of residing cells. However, the direct transplantation of DSCs suffers from poor proliferation and differentiation toward functional cells and low survival rates due to local inflammation. Recently, elegant advances in the design of novel biomaterials have been made to give promise to the use of biomimetic biomaterials to regulate various cell behaviors, including proliferation, differentiation and migration. Biomaterials could be tailored with multiple functionalities, e.g., stimuli-responsiveness. There is an emerging need to summarize recent advances in engineered biomaterials-mediated delivery and therapy of DSCs and their potential applications. Herein, we outlined the design of biomaterials for supporting DSCs and the host response to the transplantation.
Collapse
Affiliation(s)
- Weihao Yuan
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Luiza de Almeida Queiroz Ferreira
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bo Yu
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|