1
|
Mailhiot S, Peuravaara P, Egleston BD, Kearsey RJ, Mareš J, Komulainen S, Selent A, Kantola AM, Cooper AI, Vaara J, Greenaway RL, Lantto P, Telkki VV. Gas Uptake and Thermodynamics in Porous Liquids Elucidated by 129Xe NMR. J Phys Chem Lett 2024; 15:5323-5330. [PMID: 38724016 PMCID: PMC11129303 DOI: 10.1021/acs.jpclett.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024]
Abstract
We exploited 129Xe NMR to investigate xenon gas uptake and dynamics in a porous liquid formed by dissolving porous organic cages in a cavity-excluded solvent. Quantitative 129Xe NMR shows that when the amount of xenon added to the sample is lower than the amount of cages present (subsaturation), the porous liquid absorbs almost all xenon atoms from the gas phase, with 30% of the cages occupied with a Xe atom. A simple two-site exchange model enables an estimate of the chemical shift of 129Xe in the cages, which is in good agreement with the value provided by first-principles modeling. T2 relaxation times allow the determination of the exchange rate of Xe between the solvent and cage sites as well as the activation energies of the exchange. The 129Xe NMR analysis also enables determination of the free energy of confinement, and it shows that Xe binding is predominantly enthalpy-driven.
Collapse
Affiliation(s)
- Sarah
E. Mailhiot
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Petri Peuravaara
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Benjamin D. Egleston
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, U.K.
| | - Rachel J. Kearsey
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Jiří Mareš
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Sanna Komulainen
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Anne Selent
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Anu M. Kantola
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Andrew I. Cooper
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Juha Vaara
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Rebecca L. Greenaway
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, U.K.
| | - Perttu Lantto
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| | - Ville-Veikko Telkki
- NMR
Research Unit, Faculty of Science, University
of Oulu, P.O.Box 3000, FI-90014 Oulu, Finland
| |
Collapse
|
2
|
Batarchuk V, Shepelytskyi Y, Grynko V, Kovacs AH, Hodgson A, Rodriguez K, Aldossary R, Talwar T, Hasselbrink C, Ruset IC, DeBoef B, Albert MS. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. Int J Mol Sci 2024; 25:1939. [PMID: 38339217 PMCID: PMC10856220 DOI: 10.3390/ijms25031939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.
Collapse
Affiliation(s)
- Viktoriia Batarchuk
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Chemistry and Materials Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Antal Halen Kovacs
- Applied Life Science Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Aaron Hodgson
- Physics Program, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Karla Rodriguez
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Ruba Aldossary
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
| | - Tanu Talwar
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
| | - Carson Hasselbrink
- Chemistry & Biochemistry Department, California Polytechnic State University, San Luis Obispo, CA 93407-005, USA
| | | | - Brenton DeBoef
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Mitchell S. Albert
- Chemistry Department, Lakehead University, Thunder Bay, ON P7B 5E1, Canada; (V.B.)
- Thunder Bay Regional Health Research Institute, Thunder Bay, ON P7B 6V4, Canada
- Faculty of Medical Sciences, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|