1
|
Shemnsa A, Adane WD, Tessema M, Tesfaye E, Tesfaye G. Simultaneous Determination of Mineral Nutrients and Toxic Metals in M. stenopetala from Southern Ethiopia: A Comparative Study of Three Cultivating Areas Using MP-AES. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:8981995. [PMID: 38222894 PMCID: PMC10787013 DOI: 10.1155/2024/8981995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/10/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
In this study, for the first time, the levels of thirteen micro- and macromineral nutrients in the leaves, seeds, and supportive soil of Moringa stenopetala (M. stenopetala) were simultaneously determined using microwave plasma atomic emission spectroscopy (MP-AES). The samples were collected during the arid season, in 2019 from the three main M. stenopetala growing areas in southern Ethiopia (Chano Mile Kebele, Nechisar Kebele, and Konso Special Woreda). A novel digestion method for leaf and seed samples was developed using an optimized acid mixture (2.5 : 0.75 : 0.5 of HNO3, HClO4, and H2O2) at 240°C for 2 hrs and 30 min, resulting in clear and colorless solutions. The method makes the digestion process more efficient by minimizing the reagent volume, reducing digestion temperature and time, and simplifying the overall procedure. The efficiency of the optimized procedure was validated by spiking experiments, and the percentage recovery ranged between 94 and 110%. Under optimized experimental conditions, higher concentrations of essential minerals (K, Na, Ca, and Mg) were observed in the plant leaf and seed samples from the three areas. In addition, significant amounts of trace elements (Fe, Mn, Zn, and Cu) were also found. Importantly, no traces of the toxic elements (Cd and Pb) were detected in any of the analyzed samples, suggesting that the leaves and seeds of M. stenopetala are valuable sources of both micro- and macromineral nutrients and are safe from toxic metals. From a dietary perspective, the seed contains almost comparable concentrations of minerals as the leaves. As a result, the seeds of M. stenopetala can serve as an alternative source of minerals and play a role in overcoming the current global food crisis, particularly in the dry season. Analysis of variance at a 95% confidence level revealed significant differences in the levels of all mineral nutrients between the three sample means except K, Ca, Co, and Cu. Generally, the developed method includes an innovative digestion procedure that minimizes reagent consumption, operates at lower temperatures, and requires shorter digestion times, thereby optimizing resource utilization and maintaining analytical accuracy. Notably, the absence of toxic elements in the MP-AES procedure highlights the safety and reliability of M. stenopetala leaves and seeds as valuable, contamination-free sources of essential nutrients.
Collapse
Affiliation(s)
- Ashenafi Shemnsa
- Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | | | - Merid Tessema
- Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Endale Tesfaye
- Department of Chemistry, Gambella University, P.O. Box 126, Gambella, Ethiopia
| | - Gizaw Tesfaye
- Department of Chemistry, Fitche College of Teachers Education, P.O. Box 260, Fitche, Ethiopia
| |
Collapse
|
2
|
Khatun R, Modak R, Islam ASM, Moni D, Sepay N, Mukherjee R, Das G, Murmu N, Ali M. Small Molecule Interactions with Biomacromolecules: DNA Binding Interactions of a Manganese(III) Schiff Base Complex with Potential Anticancer Activities. ACS APPLIED BIO MATERIALS 2023; 6:3176-3188. [PMID: 37548990 DOI: 10.1021/acsabm.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A manganese(III) complex, [MnIII(L)(SCN)(enH)](NO3)·H2O (1•H2O) (H2L = 2-((E)-(2-((E)-2-hydroxy-3-methoxybenzylidene-amino)-ethyl-imino)methyl)-6-methoxyphenol), has been synthesized and characterized by single-crystal X-ray diffraction analysis. The interaction of 1•H2O with DNA was studied by monitoring the decrease in absorbance of the complex at λ = 324 nm with the increase in DNA concentration, providing an opportunity to determine the binding constant of the 1•H2O-ct-DNA complex as 5.63 × 103 M-1. Similarly, fluorescence titration was carried out by adding ct-DNA gradually and monitoring the increase in emission intensity at 453 nm on excitation at λex = 324 nm. A linear form of the Benesi-Hildebrand equation yields a binding constant of 4.40 × 103 M-1 at 25 °C, establishing the self-consistency of our results obtained from absorption and fluorescence titrations. The competitive displacement reactions of dyes like ethidium bromide, Hoechst, and DAPI (4',6-diamidine-2'-phenylindole dihydrochloride) from dye-ct-DNA conjugates by 1•H2O were analyzed, and the corresponding KSV values are 1.05 × 104, 1.25 × 104, and 1.35 × 104 M-1 and the Kapp values are 2.16 × 103, 8.34 × 103, and 9.0 × 103 M-1, from which it is difficult to infer the preference of groove binding over intercalation by these DNA trackers. However, the molecular docking experiments and viscosity measurement clearly indicate the preference for minor groove binding over intercalation, involving a change in Gibbs free energy of -8.56 kcal/mol. The 1•H2O complex was then evaluated for its anticancer potential in breast cancer MCF-7 cells, which severely abrogates the growth of the cells in both 2D and 3D mammospheres, indicating its promising application as an anticancer drug through a minor groove binding interaction with ct-DNA.
Collapse
Affiliation(s)
- Rousunara Khatun
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, West Bengal 700 032, India
- Aliah University, ll-A/27, Action Area II, Newtown, Action Area II, Kolkata, West Bengal 700160, India
| | - Ritwik Modak
- Department of Chemistry, Manipal Academy of Higher Education, Manipal Institute of Technology Bengaluru, Manipal 560064, India
| | - Abu Saleh Musha Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2B, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Dolan Moni
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, West Bengal 700 032, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata, West Bengal 700 017, India
| | - Rimi Mukherjee
- Department of Signal Transduction and Biogenic Amines, Chittanranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700 026, India
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittanranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700 026, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittanranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700 026, India
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, West Bengal 700 032, India
| |
Collapse
|