1
|
Liu Q, Li YQ, Xu WM, Fan SY, Huang Y, Lu SR, Kang XP, Zhang Y, Ji W, Dong WW. Polysaccharides from fermented garlic attenuate high-fat diet-induced obesity in mice through gut microbes. J Food Sci 2024; 89:10096-10112. [PMID: 39656675 DOI: 10.1111/1750-3841.17564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024]
Abstract
The weight loss and lipid-lowering effects of fermented garlic polysaccharides (BGP) in obese mice were analyzed by detecting the intestinal flora and short-chain fatty acids. An obesity model was established by feeding mice a high-fat diet (HFD) for 8 weeks. After euthanasia, biochemical index testing and hematoxylin and eosin staining were performed. Spearman analysis was used to assess the relationship between the 16S rRNA sequencing results and the fatty acid content in mouse feces. Compared with the obese model mice, the BGP group had significantly reduced body weight and serum triglycerides, total cholesterol, low-density lipoprotein cholesterol, malondialdehyde, and free fatty acids in the serum. Moreover, BGP reversed HFD-induced gut microbiota dysbiosis, as indicated by the elevated populations of Paraclostridium, Lachnospiraceae_UCG_006, Enterorhabdus, and Lachnospiraceae-NK4A136. BGP also significantly increased the contents of acetic, propionic, butyric, and valeric acids. These results indicate that BGP may serve as a potential prebiotic agent that modulates particular bacteria in the gut and their byproducts that play a crucial role in preventing diseases associated with obesity.
Collapse
Affiliation(s)
- Qi Liu
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Ya-Qian Li
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Wen-Man Xu
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Si-Yao Fan
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Yu Huang
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Shi-Rui Lu
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Xue-Ping Kang
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Yang Zhang
- Jilin Academy of Agricultural Sciences, Changchun, Jilin Province, China
| | - Wenxiu Ji
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| | - Wei-Wei Dong
- College of Agricultural Yanbian University, Yanji, Jilin Province, China
| |
Collapse
|
2
|
Li S, Liu W, Li Y, Che X, Xiao P, Liu S, Ma Y, Ren D, Wu L, Wang Q, He Y. Extraction, purification, structural characterization and anti-hyperlipidemia activity of fucoidan from Laminaria digitata. Int J Biol Macromol 2024; 279:135223. [PMID: 39241999 DOI: 10.1016/j.ijbiomac.2024.135223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Laminaria digitata is a high-quality seaweed resource that is widely cultured and has good application prospects. In this study, Laminaria digitata fucoidan (LF) was extracted from Laminaria digitata, and purified using DEAE-Sepharose Fast Flow gel column to obtain four different grades. Among those, LF4 (Mw:165 kDa), mainly composed of fucose(56.80 %), had the highest total sugar (66.91 %) and sulfate (17.07 %) content. FT-RT and NMR results showed that LF4 was mainly composed of galactosylated galactofucose, and has a sulfate group attached to fucose C4. With the animal experimentation, it was revealed that hyperlipidaemic mice had significantly higher levels of TC (5.52 mmol/L), TG (2.28 mmol/L) and LDL-C (5.12 mmol/L) and significantly lower levels of HDL-C (2 mmol/L). However, LF had the efficacy in modulating the lipid metabolism disturbances induced by hyperlipidemia, as well as the ability to regulate cholesterol transport in serum. Moreover, it regulated AMPK/ACC, PPAR-α/LAXRa, Nrf2/Nqo1, TLR4/NF-κB signaling pathway genes and proteins expression in the liver. In addition, it promoted the production of beneficial short-chain fatty acids (SCFAs) while improving the composition and structure of gut microbiota, including balancing the abundance of Bacteroidota, Firmicutes, Muribaculaceae, Alloprevotella, Escherichia-Shigella, Prevotella and NK4A136. The results clearly indicated that LF4 could significantly ameliorate hyperlipidemia, suggesting its prospective application as a functional food.
Collapse
Affiliation(s)
- Shangkun Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Wen Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yutong Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Xinyi Che
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Peng Xiao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Shu Liu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yichao Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Dandan Ren
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Long Wu
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Qiukuan Wang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China
| | - Yunhai He
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116000, China; Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, Dalian Ocean University, Dalian 116023, China; National R&D Branch Center for Seaweed Processing, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
3
|
Ali A, Ullah Z, Ullah R, Kazi M. Barley a nutritional powerhouse for gut health and chronic disease defense. Heliyon 2024; 10:e38669. [PMID: 39640645 PMCID: PMC11619984 DOI: 10.1016/j.heliyon.2024.e38669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024] Open
Abstract
Background Digestive issues are recognized as significant contributors to various chronic diseases, including obesity, diabetes, and cardiovascular disease. Barley, a traditional grain, offers considerable promise in addressing these health challenges due to unique nutritional and bioactive compounds. Objective This review examines the therapeutic potential of various parts of barley, underutilized resource, for chronic disease prevention and management. Method ology: A comprehensive literature search was conducted across multiple databases like Google Scholar, PubMed, and ISI Web of Science, to identify nutritional components and functional ingredients in barley that contribute to gut health and chronic disease mitigation. Results The finding suggests that humans digest barley starch more slowly than wheat and rice, which benefits chronic disease management. Barley's high-molecular-weight β-glucan high content acts as a prebiotic, promotes gut health through microbiome modulation and short-chain fatty acid production, potentially preventing colon cancer and boosting immunity. Recent studies on exploring barley grass of high land showed functional ingredients such as flavonoids, saponarin lutonarin, superoxide dismutase, gamma-aminobutyric acid, polyphenols K, Ca, Se, tryptophan chlorophyll, and vitamins, suggesting potential for enhanced antioxidant activity and improved management of chronic conditions like diabetes, cholesterol, hypertension, cardiovascular health, liver protection, and even boosted immunity. Conclusion This review underscores the therapeutic potential of barley and its components in chronic disease management, highlighting the need for well-designed clinical trials to translate these findings into effective interventions.
Collapse
Affiliation(s)
- Arif Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Zakir Ullah
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Rehman Ullah
- Department of Botany, University of Peshawar, Peshawar, 25100, Pakistan
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, POBOX- 2457, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Geng J, Wu Y, Tian H, Dong J. Alleviation of High-Fat Diet-Induced Hyperlipidemia in Mice by Stachys sieboldii Miq. Huangjiu via the Modulation of Gut Microbiota Composition and Metabolic Function. Foods 2024; 13:2360. [PMID: 39123552 PMCID: PMC11312184 DOI: 10.3390/foods13152360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Hyperlipidemia is a chronic disease that is difficult to cure, and long-term pharmacotherapy may have negative consequences. Dietary therapy is a very promising strategy, and Chinese rice wine (Huangjiu) will play an important role because of its many biologically active components. In this work, the alleviating effect of Stachys sieboldii Miq. Huangjiu (CSCHJ) on high-fat diet-induced hyperlipidemia in mice was investigated, which is brewed from the wheat Qu with the addition of Stachys sieboldii Miq. and contains 15.54 g/L of polysaccharides. The experimental results showed that CSCHJ inhibited appetite, reduced body weight and blood sugar levels, and downregulated the serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) while concurrently upregulating high-density lipoprotein cholesterol (HDL-C) in the high-fat diet-induced hyperlipidemia mice. At the same time, it was discovered that alcohol worsens hyperlipidemia symptoms and related physiological markers, implying that CSCHJ polysaccharides may play a role in hyperlipidemia treatment. Through the assessment of organ indices, liver and kidney function, and tissue staining, CSCHJ demonstrated efficacy in repairing liver, kidney, and colon mucosal damage in hyperlipidemic mice. Furthermore, 16S rDNA sequencing and gas chromatography studies revealed that CSCHJ effectively restored the intestinal microbial structure and enhanced the quantity of fecal short-chain fatty acids (SCFAs) in hyperlipidemic mice. Therefore, the alleviating effect of CSCHJ on hyperlipidemia in mice may be attributed to its regulation of energy metabolism by repairing liver, kidney, and colon mucosal damage and restoring the gut microbiota structure, among other mechanisms. Overall, our findings provide evidence that CSCHJ contains active ingredients capable of alleviating hyperlipidemia, thereby laying a theoretical foundation for the extraction of bioactive substances from Huangjiu for future medical or dietary use.
Collapse
Affiliation(s)
- Jingzhang Geng
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
- School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an 710049, China
| | - Yunxia Wu
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
| | - Honglei Tian
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
| | - Jianwei Dong
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
| |
Collapse
|
5
|
Wei G, Huang N, Li M, Guan F, Chen L, Liao Y, Xie X, Li Y, Su Z, Chen J, Liu Y. Tetrahydroberberine alleviates high-fat diet-induced hyperlipidemia in mice via augmenting lipoprotein assembly-induced clearance of low-density lipoprotein and intermediate-density lipoprotein. Eur J Pharmacol 2024; 968:176433. [PMID: 38369273 DOI: 10.1016/j.ejphar.2024.176433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The promotion of excess low-density lipoprotein (LDL) clearance stands as an effective clinical approach for treating hyperlipidemia. Tetrahydroberberine, a metabolite of berberine, exhibits superior bioavailability compared to berberine and demonstrates a pronounced hypolipidemic effect. Despite these characteristics, the impact of tetrahydroberberine on improving excessive LDL clearance in hyperlipidemia has remained unexplored. Thus, this study investigates the potential effects of tetrahydroberberine on high-fat diet-induced hyperlipidemia in mice. The findings reveal that tetrahydroberberine exerts a more potent lipid-lowering effect than berberine, particularly concerning LDL-cholesterol in hyperlipidemic mice. Notably, tetrahydroberberine significantly reduces serum levels of upstream lipoproteins, including intermediate-density lipoprotein (IDL) and very low-density lipoprotein, by promoting their conversion to LDL. This reduction is further facilitated by the upregulation of hepatic LDL receptor expression induced by tetrahydroberberine. Intriguingly, tetrahydroberberine enhances the apolipoprotein E (ApoE)/apolipoprotein B100 (ApoB100) ratio, influencing lipoprotein assembly in the serum. This effect is achieved through the activation of the efflux of ApoE-containing cholesterol in the liver. The ApoE/ApoB100 ratio exhibits a robust negative correlation with serum levels of LDL and IDL, indicating its potential as a diagnostic indicator for hyperlipidemia. Moreover, tetrahydroberberine enhances hepatic lipid clearance without inducing lipid accumulation in the liver and alleviates existing liver lipid content. Importantly, no apparent hepatorenal toxicity is observed following tetrahydroberberine treatment for hyperlipidemia. In summary, tetrahydroberberine demonstrates a positive impact against hyperlipidemia by modulating lipoprotein assembly-induced clearance of LDL and IDL. The ApoE/ApoB100 ratio emerges as a promising diagnostic indicator for hyperlipidemia, showcasing the potential clinical significance of tetrahydroberberine in lipid management.
Collapse
Affiliation(s)
- Guilan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ning Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Mengyao Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Fengkun Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liping Chen
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Yingyi Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xingyu Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan, 523808, China.
| |
Collapse
|
6
|
Zhang Y, Lin Y, Wu K, Jiang M, Li L, Liu Y. Pleurotus abieticola Polysaccharide Alleviates Hyperlipidemia Symptoms via Inhibition of Nuclear Factor-κB/Signal Transducer and Activator of Transcription 3-Mediated Inflammatory Responses. Nutrients 2023; 15:4904. [PMID: 38068762 PMCID: PMC10708251 DOI: 10.3390/nu15234904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Hyperlipidemia (HLP) is a metabolic syndrome induced by obesity, which has been widely recognized as a significant threat to human health. Pleurotus abieticola, an edible lignin-degrading fungus, remains relatively understudied in terms of its bioactivity and medicinal properties. In this study, the lipid-lowering effect of Pleurotus abieticola polysaccharide (PAPS1) was systematically explored in high-fat diet (HFD)-induced HLP mice. The findings demonstrated that the administration of PAPS1 significantly inhibited bodyweight gain, ameliorated blood glucose and lipid levels, reduced fat accumulation, and mitigated hepatic injury in HLP mice. In addition, PAPS1 demonstrated the capability to increase the levels of three distinct fecal metabolites while simultaneously reducing the levels of eight other fecal metabolites in HLP mice. According to biological detection, PAPS1 reduced the hepatic level of reactive oxygen species (ROS) and pro-inflammatory factors, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, -6, -17A, -22, and -23, and increased the expression of anti-inflammatory factor IL-10. Combined with proteomics, Western blot and immunohistochemistry analysis showed that PAPS1 exerted suppressive effects on inflammation and oxidative damage by inhibiting the nuclear factor-κB (NF-κB)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in HLP mice. These findings offer evidence supporting the effectiveness of PAPS1 as a therapeutic agent in reducing lipid levels through its targeting of chronic inflammation.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Yingjie Lin
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Keyi Wu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China;
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| |
Collapse
|