1
|
Li T, Li J, Bo L, Pei Z, Shen L, Cheng J, Tian Z, Du Y, Cai B, Sun C, Brooks MR, Albert Pan Y. Airborne Acoustic Vortex End Effector-based Contactless, Multi-mode, Programmable Control of Object Surfing. ADVANCED MATERIALS TECHNOLOGIES 2024; 9:2400564. [PMID: 39600617 PMCID: PMC11588303 DOI: 10.1002/admt.202400564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Indexed: 11/29/2024]
Abstract
Tweezers based on optical, electric, magnetic, and acoustic fields have shown great potential for contactless object manipulation. However, current tweezers designed for manipulating millimeter-sized objects such as droplets, particles, and small animals, exhibit limitations in translation resolution, range, and path complexity. Here, we introduce a novel acoustic vortex tweezers system, which leverages a unique airborne acoustic vortex end effector integrated with a three degree-of-freedom (DoF) linear motion stage, for enabling contactless, multi-mode, programmable manipulation of millimeter-sized objects. The acoustic vortex end effector utilizes a cascaded circular acoustic array, which is portable and battery-powered, to generate an acoustic vortex with a ring-shaped energy pattern. The vortex applies acoustic radiation forces to trap and spin an object at its center, simultaneously protecting this object by repelling other materials away with its high-energy ring. Moreover, our vortex tweezers system facilitates contactless, multi-mode, programmable object surfing, as demonstrated in experiments involving trapping, repelling, and spinning particles, translating particles along complex paths, guiding particles around barriers, translating and rotating droplets containing zebrafish larvae, and merging droplets. With these capabilities, we anticipate that our tweezers system will become a valuable tool for the automated, contactless handling of droplets, particles, and bio-samples in biomedical and biochemical research.
Collapse
Affiliation(s)
- Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Jiali Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Luyu Bo
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Zhe Pei
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Liang Shen
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Jiangtao Cheng
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Yingshan Du
- Department of Biomedical Engineering and Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Bowen Cai
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Chuangchuang Sun
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Michael R. Brooks
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Y. Albert Pan
- Fralin Biomedical Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| |
Collapse
|
2
|
Gan C, Zhang J, Chen B, Wang A, Xiong H, Zhao J, Wang C, Liang S, Feng L. Optoelectronic Tweezers Micro-Well System for Highly Efficient Single-Cell Trapping, Dynamic Sorting, and Retrieval. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307329. [PMID: 38509856 DOI: 10.1002/smll.202307329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Indexed: 03/22/2024]
Abstract
Single-cell arrays have emerged as a versatile method for executing single-cell manipulations across an array of biological applications. In this paper, an innovative microfluidic platform is unveiled that utilizes optoelectronic tweezers (OETs) to array and sort individual cells at a flow rate of 20 µL min-1. This platform is also adept at executing dielectrophoresis (DEP)-based, light-guided single-cell retrievals from designated micro-wells. This presents a compelling non-contact method for the rapid and straightforward sorting of cells that are hard to distinguish. Within this system, cells are individually confined to micro-wells, achieving an impressive high single-cell capture rate exceeding 91.9%. The roles of illuminating patterns, flow velocities, and applied electrical voltages are delved into in enhancing the single-cell capture rate. By integrating the OET system with the micro-well arrays, the device showcases adaptability and a plethora of functions. It can concurrently trap and segregate specific cells, guided by their dielectric signatures. Experimental results, derived from a mixed sample of HepG2 and L-O2 cells, reveal a sorting accuracy for L-O2 cells surpassing 91%. Fluorescence markers allow for the identification of sequestered, fluorescence-tagged HepG2 cells, which can subsequently be selectively released within the chip. This platform's rapidity in capturing and releasing individual cells augments its potential for future biological research and applications.
Collapse
Affiliation(s)
- Chunyuan Gan
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Jiaying Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Bo Chen
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Ao Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Hongyi Xiong
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Jiawei Zhao
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Chutian Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Shuzhang Liang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical, Beihang University, Beijing, 100191, China
| |
Collapse
|
3
|
Xu M, Vidler C, Wang J, Chen X, Pan Z, Harley WS, Lee PVS, Collins DJ. Micro-Acoustic Holograms for Detachable Microfluidic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307529. [PMID: 38174594 DOI: 10.1002/smll.202307529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Acoustic microfluidic devices have advantages for diagnostic applications, therapeutic solutions, and fundamental research due to their contactless operation, simple design, and biocompatibility. However, most acoustofluidic approaches are limited to forming simple and fixed acoustic patterns, or have limited resolution. In this study,a detachable microfluidic device is demonstrated employing miniature acoustic holograms to create reconfigurable, flexible, and high-resolution acoustic fields in microfluidic channels, where the introduction of a solid coupling layer makes these holograms easy to fabricate and integrate. The application of this method to generate flexible acoustic fields, including shapes, characters, and arbitrarily rotated patterns, within microfluidic channels, is demonstrated.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Callum Vidler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jizhen Wang
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Xi Chen
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Zijian Pan
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - William S Harley
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Graeme Clarke Institute, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Graeme Clarke Institute, University of Melbourne, Parkville, Victoria, 3052, Australia
| |
Collapse
|
4
|
Harley WS, Kolesnik K, Heath DE, Collins DJ. Enhanced acoustic streaming effects via sharp-edged 3D microstructures. LAB ON A CHIP 2024; 24:1626-1635. [PMID: 38357759 DOI: 10.1039/d3lc00742a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Acoustofluidic micromanipulation is an important tool for biomedical research, where acoustic forces offer the ability to manipulate fluids, cells, and particles in a rapid, biocompatible, and contact-free manner. Of particular interest is the investigation of acoustically driven sharp edges, where high tip velocity magnitudes and strong acoustic potential gradients drive rapid motion. Whereas prior devices utilizing 2D sharp edges have demonstrated promise for micromanipulation activities, taking advantage of 3D structures has the potential to increase their performance and the range of manipulation activities. In this work, we investigate high-magnitude acoustic streaming fields in the vicinity of sharp-edged, sub-wavelength 3D microstructures. We numerically model and experimentally demonstrate this in fabricating parametrically configured 3D microstructures whose tip-angle and geometry influence acoustic streaming velocities and the complexity of streaming vortices, finding that the simulated and realized velocities and streaming patterns are both tunable and a function of microstructure shape. These sharp-edge interfaces hold promise for biomedical studies benefiting from precise and targeted micromanipulation.
Collapse
Affiliation(s)
- William S Harley
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia.
- Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3000, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kirill Kolesnik
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
5
|
Kolesnik K, Rajagopal V, Collins DJ. Optimizing coupling layer and superstrate thickness in attachable acoustofluidic devices. ULTRASONICS 2024; 137:107202. [PMID: 37979521 DOI: 10.1016/j.ultras.2023.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Superstrate-based acoustofluidic devices, where the fluidic elements are reversibly coupled to a transducer rather than bonded to it, offer advantages for cost, interchangeability and preventing contamination between samples. A variety of coupling materials can be used to transmit acoustic energies into attachable superstrates, though the dimensions and material composition of the system elements are not typically optimized. This work analyzes these coupling layers for bulk wavefront transmission, including water, ultrasound gel and polydimethylsiloxane (PDMS), as well as the material makeup and thickness of the superstrate component, which is commonly comprised of glass, quartz or silicon. Our results highlight the importance of coupling layer and superstrate dimensions, identifying frequencies and component thicknesses that maximize transmission efficiency. Our results indicate that superstrate thicknesses 0.55 times the acoustic wavelength result in maximal acoustic coupling. While various coupling layers and superstrate materials are capable of similar acoustic energy transmission, the inherent dimensional stability of the PDMS coupling layers, somewhat less common in superstrate work compared to liquid-based agents, presents advantages for practically maximizing acoustic efficiency.
Collapse
Affiliation(s)
- Kirill Kolesnik
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia; The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|