1
|
Jamal QMS, Ahmad V. Bacterial metabolomics: current applications for human welfare and future aspects. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:207-230. [PMID: 39078342 DOI: 10.1080/10286020.2024.2385365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
An imbalanced microbiome is linked to several diseases, such as cancer, inflammatory bowel disease, obesity, and even neurological disorders. Bacteria and their by-products are used for various industrial and clinical purposes. The metabolites under discussion were chosen based on their biological impacts on host and gut microbiota interactions as established by metabolome research. The separation of bacterial metabolites by using statistics and machine learning analysis creates new opportunities for applications of bacteria and their metabolites in the environmental and medical sciences. Thus, the metabolite production strategies, methodologies, and importance of bacterial metabolites for human well-being are discussed in this review.
Collapse
Affiliation(s)
- Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Varish Ahmad
- Health Information Technology Department, The Applied College, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Reuben RC, Torres C. Integrating the milk microbiome signatures in mastitis: milk-omics and functional implications. World J Microbiol Biotechnol 2025; 41:41. [PMID: 39826029 PMCID: PMC11742929 DOI: 10.1007/s11274-024-04242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
Mammalian milk contains a variety of complex bioactive and nutritional components and microorganisms. These microorganisms have diverse compositions and functional roles that impact host health and disease pathophysiology, especially mastitis. The advent and use of high throughput omics technologies, including metagenomics, metatranscriptomics, metaproteomics, metametabolomics, as well as culturomics in milk microbiome studies suggest strong relationships between host phenotype and milk microbiome signatures in mastitis. While single omics studies have undoubtedly contributed to our current understanding of milk microbiome and mastitis, they often provide limited information, targeting only a single biological viewpoint which is insufficient to provide system-wide information necessary for elucidating the biological footprints and molecular mechanisms driving mastitis and milk microbiome dysbiosis. Therefore, integrating a multi-omics approach in milk microbiome research could generate new knowledge, improve the current understanding of the functional and structural signatures of the milk ecosystem, and provide insights for sustainable mastitis control and microbiome management.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Biology Department, King's College, 133 North River Street, Wilkes-Barre, PA, 18711, USA.
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
3
|
Arıkan M, Atabay B. Construction of Protein Sequence Databases for Metaproteomics: A Review of the Current Tools and Databases. J Proteome Res 2024; 23:5250-5262. [PMID: 39449618 DOI: 10.1021/acs.jproteome.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In metaproteomics studies, constructing a reference protein sequence database that is both comprehensive and not overly large is critical for the peptide identification step. Therefore, the availability of well-curated reference databases and tools for custom database construction is essential to enhance the performance of metaproteomics analyses. In this review, we first provide an overview of metaproteomics by presenting a concise historical background, outlining a typical experimental and bioinformatics workflow, emphasizing the crucial step of constructing a protein sequence database for metaproteomics. We then delve into the current tools available for building such databases, highlighting their individual approaches, utility, and advantages and limitations. Next, we examine existing protein sequence databases, detailing their scope and relevance in metaproteomics research. Then, we provide practical recommendations for constructing protein sequence databases for metaproteomics, along with an overview of the current challenges in this area. We conclude with a discussion of anticipated advancements, emerging trends, and future directions in the construction of protein sequence databases for metaproteomics.
Collapse
Affiliation(s)
- Muzaffer Arıkan
- Biotechnology Division, Department of Biology, Faculty of Science, Istanbul University, Istanbul 34134, Türkiye
| | - Başak Atabay
- Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul 34810, Türkiye
| |
Collapse
|
4
|
Tariq M, Liu Y, Rizwan A, Shoukat CA, Aftab Q, Lu J, Zhang Y. Impact of elevated CO 2 on soil microbiota: A meta-analytical review of carbon and nitrogen metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175354. [PMID: 39117202 DOI: 10.1016/j.scitotenv.2024.175354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
In the face of 21st-century challenges driven by population growth and resource depletion, understanding the intricacies of climate change is crucial for environmental sustainability. This review systematically explores the interaction between rising atmospheric CO2 concentrations and soil microbial populations, with possible feedback effects on climate change and terrestrial carbon (C) cycling through a meta-analytical approach. Furthermore, it investigates the enzymatic activities related to carbon acquisition, gene expression patterns governing carbon and nitrogen metabolism, and metagenomic and meta-transcriptomic dynamics in response to elevated CO2 levels. The study reveals that elevated CO2 levels substantially influence soil microbial communities, increasing microbial biomass C and respiration rate by 15 % and upregulating genes involved in carbon and nitrogen metabolism by 12 %. Despite a 14 % increase in C-acquiring enzyme activity, there is a 5 % decrease in N-acquiring enzyme activity, indicating complex microbial responses to CO2 changes. Additionally, fungal marker ratios increase by 14 % compared to bacterial markers, indicating potential ecosystem changes. However, the current inadequacy of data on metagenomic and meta-transcriptomic processes underscores the need for further research. Understanding soil microbial feedback mechanisms is crucial for elucidating the role of rising CO2 levels in carbon sequestration and climate regulation. Consequently, future research should prioritize a comprehensive elucidation of soil microbial carbon cycling, greenhouse gas emission dynamics, and their underlying drivers.
Collapse
Affiliation(s)
- Maryam Tariq
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuexian Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ali Rizwan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Chaudhary Ammar Shoukat
- Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qudsia Aftab
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanxun Zhang
- Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408
| |
Collapse
|
5
|
Cao T, Liu Y, Gao C, Yuan Y, Chen W, Zhang T. Understanding Nanoscale Interactions between Minerals and Microbes: Opportunities for Green Remediation of Contaminated Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39093060 DOI: 10.1021/acs.est.4c05324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In situ contaminant degradation and detoxification mediated by microbes and minerals is an important element of green remediation. Improved understanding of microbe-mineral interactions on the nanoscale offers promising opportunities to further minimize the environmental and energy footprints of site remediation. In this Perspective, we describe new methodologies that take advantage of an array of multidisciplinary tools─including multiomics-based analysis, bioinformatics, machine learning, gene editing, real-time spectroscopic and microscopic analysis, and computational simulations─to identify the key microbial drivers in the real environments, and to characterize in situ the dynamic interplay between minerals and microbes with high spatiotemporal resolutions. We then reflect on how the knowledge gained can be exploited to modulate the binding, electron transfer, and metabolic activities at the microbe-mineral interfaces, to develop new in situ contaminant degradation and detoxication technologies with combined merits of high efficacy, material longevity, and low environmental impacts. Two main strategies are proposed to maximize the synergy between minerals and microbes, including using mineral nanoparticles to enhance the versatility of microorganisms (e.g., tolerance to environmental stresses, growth and metabolism, directed migration, selectivity, and electron transfer), and using microbes to synthesize and regenerate highly dispersed nanostructures with desired structural/surface properties and reactivity.
Collapse
Affiliation(s)
- Tianchi Cao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Cheng Gao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Yuxin Yuan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
6
|
Bi X, Wang J, Liu C. Intratumoral Microbiota: Metabolic Influences and Biomarker Potential in Gastrointestinal Cancer. Biomolecules 2024; 14:917. [PMID: 39199305 PMCID: PMC11353126 DOI: 10.3390/biom14080917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Gastrointestinal (GI) cancers impose a substantial global health burden, highlighting the necessity for deeper understanding of their intricate pathogenesis and treatment strategies. This review explores the interplay between intratumoral microbiota, tumor metabolism, and major types of GI cancers (including esophageal, gastric, liver, pancreatic, and colorectal cancers), summarizing recent studies and elucidating their clinical implications and future directions. Recent research revealed altered microbial signatures within GI tumors, impacting tumor progression, immune responses, and treatment outcomes. Dysbiosis-induced alterations in tumor metabolism, including glycolysis, fatty acid metabolism, and amino acid metabolism, play critical roles in cancer progression and therapeutic resistance. The integration of molecular mechanisms and potential biomarkers into this understanding further enhances the prognostic significance of intratumoral microbiota composition and therapeutic opportunities targeting microbiota-mediated tumor metabolism. Despite advancements, challenges remain in understanding the dynamic interactions within the tumor microenvironment (TME). Future research directions, including advanced omics technologies and prospective clinical studies, offer promising avenues for precision oncology and personalized treatment interventions in GI cancer. Overall, integrating microbiota-based approaches and molecular biomarkers into GI cancer management holds promise for improving patient outcomes and survival.
Collapse
Affiliation(s)
- Xueyuan Bi
- Department of Pharmacy, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Cuicui Liu
- Department of Science and Education, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
7
|
Ahuja V, Singh PK, Mahata C, Jeon JM, Kumar G, Yang YH, Bhatia SK. A review on microbes mediated resource recovery and bioplastic (polyhydroxyalkanoates) production from wastewater. Microb Cell Fact 2024; 23:187. [PMID: 38951813 PMCID: PMC11218116 DOI: 10.1186/s12934-024-02430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Plastic is widely utilized in packaging, frameworks, and as coverings material. Its overconsumption and slow degradation, pose threats to ecosystems due to its toxic effects. While polyhydroxyalkanoates (PHA) offer a sustainable alternative to petroleum-based plastics, their production costs present significant obstacles to global adoption. On the other side, a multitude of household and industrial activities generate substantial volumes of wastewater containing both organic and inorganic contaminants. This not only poses a threat to ecosystems but also presents opportunities to get benefits from the circular economy. Production of bioplastics may be improved by using the nutrients and minerals in wastewater as a feedstock for microbial fermentation. Strategies like feast-famine culture, mixed-consortia culture, and integrated processes have been developed for PHA production from highly polluted wastewater with high organic loads. Various process parameters like organic loading rate, organic content (volatile fatty acids), dissolved oxygen, operating pH, and temperature also have critical roles in PHA accumulation in microbial biomass. Research advances are also going on in downstream and recovery of PHA utilizing a combination of physical and chemical (halogenated solvents, surfactants, green solvents) methods. This review highlights recent developments in upcycling wastewater resources into PHA, encompassing various production strategies, downstream processing methodologies, and techno-economic analyses. SHORT CONCLUSION Organic carbon and nitrogen present in wastewater offer a promising, cost-effective source for producing bioplastic. Previous attempts have focused on enhancing productivity through optimizing culture systems and growth conditions. However, despite technological progress, significant challenges persist, such as low productivity, intricate downstream processing, scalability issues, and the properties of resulting PHA.
Collapse
Affiliation(s)
- Vishal Ahuja
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Pankaj Kumar Singh
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Chandan Mahata
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana- Champaign, 1304 W. Pennsylvania Avenue, Urbana, 61801, USA
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Chungnam, 331-825, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600, Forus, Stavanger, 4036, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
8
|
Lange E, Kranert L, Krüger J, Benndorf D, Heyer R. Microbiome modeling: a beginner's guide. Front Microbiol 2024; 15:1368377. [PMID: 38962127 PMCID: PMC11220171 DOI: 10.3389/fmicb.2024.1368377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Microbiomes, comprised of diverse microbial species and viruses, play pivotal roles in human health, environmental processes, and biotechnological applications and interact with each other, their environment, and hosts via ecological interactions. Our understanding of microbiomes is still limited and hampered by their complexity. A concept improving this understanding is systems biology, which focuses on the holistic description of biological systems utilizing experimental and computational methods. An important set of such experimental methods are metaomics methods which analyze microbiomes and output lists of molecular features. These lists of data are integrated, interpreted, and compiled into computational microbiome models, to predict, optimize, and control microbiome behavior. There exists a gap in understanding between microbiologists and modelers/bioinformaticians, stemming from a lack of interdisciplinary knowledge. This knowledge gap hinders the establishment of computational models in microbiome analysis. This review aims to bridge this gap and is tailored for microbiologists, researchers new to microbiome modeling, and bioinformaticians. To achieve this goal, it provides an interdisciplinary overview of microbiome modeling, starting with fundamental knowledge of microbiomes, metaomics methods, common modeling formalisms, and how models facilitate microbiome control. It concludes with guidelines and repositories for modeling. Each section provides entry-level information, example applications, and important references, serving as a valuable resource for comprehending and navigating the complex landscape of microbiome research and modeling.
Collapse
Affiliation(s)
- Emanuel Lange
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Lena Kranert
- Institute for Automation Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jacob Krüger
- Engineering of Software-Intensive Systems, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Dirk Benndorf
- Applied Biosciences and Bioprocess Engineering, Anhalt University of Applied Sciences, Köthen, Germany
| | - Robert Heyer
- Multidimensional Omics Data Analysis, Department for Bioanalytics, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
- Graduate School Digital Infrastructure for the Life Sciences, Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Multidimensional Omics Data Analysis, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
9
|
Fernández-Irigoyen J, Santamaría E. Special Issue "Deployment of Proteomics Approaches in Biomedical Research". Int J Mol Sci 2024; 25:1717. [PMID: 38338994 PMCID: PMC10855870 DOI: 10.3390/ijms25031717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Many angles of personalized medicine, such as diagnostic improvements, systems biology [...].
Collapse
Affiliation(s)
| | - Enrique Santamaría
- Proteomics Platform, Clinical Neuroproteomics Unit, Navarrabiomed, Hospitalario Universitario de Navarra (HUN), Navarra Institute for Health Research (IDISNA), Universidad Pública de Navarra (UPNA), Irunlarrea 3, 31008 Pamplona, Spain
| |
Collapse
|
10
|
Martínez-Espinosa RM. Molecular Advances in Microbial Metabolism 2.0. Int J Mol Sci 2024; 25:1361. [PMID: 38279361 PMCID: PMC10816377 DOI: 10.3390/ijms25021361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
The advances in molecular biology techniques and omics approaches have made it possible to take giant steps in applied research in life sciences [...].
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Department of Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain;
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Alicante, Spain
| |
Collapse
|
11
|
Arikan M, Muth T. gNOMO2: a comprehensive and modular pipeline for integrated multi-omics analyses of microbiomes. Gigascience 2024; 13:giae038. [PMID: 38995144 PMCID: PMC11240238 DOI: 10.1093/gigascience/giae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/04/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND In recent years, omics technologies have offered an exceptional chance to gain a deeper insight into the structural and functional characteristics of microbial communities. As a result, there is a growing demand for user-friendly, reproducible, and versatile bioinformatic tools that can effectively harness multi-omics data to provide a holistic understanding of microbiomes. Previously, we introduced gNOMO, a bioinformatic pipeline tailored to analyze microbiome multi-omics data in an integrative manner. In response to the evolving demands within the microbiome field and the growing necessity for integrated multi-omics data analysis, we have implemented substantial enhancements to the gNOMO pipeline. RESULTS Here, we present gNOMO2, a comprehensive and modular pipeline that can seamlessly manage various omics combinations, ranging from 2 to 4 distinct omics data types, including 16S ribosomal RNA (rRNA) gene amplicon sequencing, metagenomics, metatranscriptomics, and metaproteomics. Furthermore, gNOMO2 features a specialized module for processing 16S rRNA gene amplicon sequencing data to create a protein database suitable for metaproteomics investigations. Moreover, it incorporates new differential abundance, integration, and visualization approaches, enhancing the toolkit for a more insightful analysis of microbiomes. The functionality of these new features is showcased through the use of 4 microbiome multi-omics datasets encompassing various ecosystems and omics combinations. gNOMO2 not only replicated most of the primary findings from these studies but also offered further valuable perspectives. CONCLUSIONS gNOMO2 enables the thorough integration of taxonomic and functional analyses in microbiome multi-omics data, offering novel insights in both host-associated and free-living microbiome research. gNOMO2 is available freely at https://github.com/muzafferarikan/gNOMO2.
Collapse
Affiliation(s)
- Muzaffer Arikan
- Biotechnology Division, Department of Biology, Faculty of Science, Istanbul University, 34134, Istanbul, Türkiye
| | - Thilo Muth
- Domain Data Competence Center (MF 2), Robert Koch Institute (RKI), 13353, Berlin, Germany
| |
Collapse
|
12
|
Pottie I, Vázquez Fernández R, Van de Wiele T, Briers Y. Phage lysins for intestinal microbiome modulation: current challenges and enabling techniques. Gut Microbes 2024; 16:2387144. [PMID: 39106212 PMCID: PMC11305034 DOI: 10.1080/19490976.2024.2387144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024] Open
Abstract
The importance of the microbiota in the intestinal tract for human health has been increasingly recognized. In this perspective, microbiome modulation, a targeted alteration of the microbial composition, has gained interest. Phage lysins, peptidoglycan-degrading enzymes encoded by bacteriophages, are a promising new class of antibiotics currently under clinical development for treating bacterial infections. Due to their high specificity, lysins are considered microbiome-friendly. This review explores the opportunities and challenges of using lysins as microbiome modulators. First, the high specificity of endolysins, which can be further modulated using protein engineering or targeted delivery methods, is discussed. Next, obstacles and possible solutions to assess the microbiome-friendliness of lysins are considered. Finally, lysin delivery to the intestinal tract is discussed, including possible delivery methods such as particle-based and probiotic vehicles. Mapping the hurdles to developing lysins as microbiome modulators and identifying possible ways to overcome these hurdles can help in their development. In this way, the application of these innovative antimicrobial agents can be expanded, thereby taking full advantage of their characteristics.
Collapse
Affiliation(s)
- Iris Pottie
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Roberto Vázquez Fernández
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
| |
Collapse
|
13
|
Salas-Espejo E, Terrón-Camero LC, Ruiz JL, Molina NM, Andrés-León E. Exploring the Microbiome in Human Reproductive Tract: High-Throughput Methods for the Taxonomic Characterization of Microorganisms. Semin Reprod Med 2023; 41:125-143. [PMID: 38320576 DOI: 10.1055/s-0044-1779025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Microorganisms are important due to their widespread presence and multifaceted roles across various domains of life, ecology, and industries. In humans, they underlie the proper functioning of multiple systems crucial to well-being, including immunological and metabolic functions. Emerging research addressing the presence and roles of microorganisms within human reproduction is increasingly relevant. Studies implementing new methodologies (e.g., to investigate vaginal, uterine, and semen microenvironments) can now provide relevant insights into fertility, reproductive health, or pregnancy outcomes. In that sense, cutting-edge sequencing techniques, as well as others such as meta-metabolomics, culturomics, and meta-proteomics, are becoming more popular and accessible worldwide, allowing the characterization of microbiomes at unprecedented resolution. However, they frequently involve rather complex laboratory protocols and bioinformatics analyses, for which researchers may lack the required expertise. A suitable pipeline would successfully enable both taxonomic classification and functional profiling of the microbiome, providing easy-to-understand biological interpretations. However, the selection of an appropriate methodology would be crucial, as it directly impacts the reproducibility, accuracy, and quality of the results and observations. This review focuses on the different current microbiome-related techniques in the context of human reproduction, encompassing niches like vagina, endometrium, and seminal fluid. The most standard and reliable methods are 16S rRNA gene sequencing, metagenomics, and meta-transcriptomics, together with complementary approaches including meta-proteomics, meta-metabolomics, and culturomics. Finally, we also offer case examples and general recommendations about the most appropriate methods and workflows and discuss strengths and shortcomings for each technique.
Collapse
Affiliation(s)
- Eduardo Salas-Espejo
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Laura C Terrón-Camero
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - José L Ruiz
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| | - Nerea M Molina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Eduardo Andrés-León
- Bioinformatics Unit, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN), CSIC, Granada, Spain
| |
Collapse
|