1
|
Yamada H, Iwai H, Hashiya F, Kimura Y, Abe H, Yamamoto J. Concise Affinity-Based Purification of Ligated mRNA for Structure-Activity Relationship Studies of Nucleosugar Modification Patterns. Chembiochem 2025; 26:e202400711. [PMID: 39533830 DOI: 10.1002/cbic.202400711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Position-specific nucleoside sugar modifications have been shown to improve the translational activity and stability of chemically synthesized mRNA. For pharmaceutical applications of chemically modified mRNAs, a rapid purification methodology is imperative to identify the optimal modification pattern. However, while the chemical synthesis of mRNAs can be accomplished by splint ligation of oligonucleotide fragments, the current purification method for ligated mRNAs based on denaturing polyacrylamide gel electrophoresis tends to be time consuming. In this study, we developed a two-step affinity purification method for rapid sample preparation. In this method, ligated mRNA is captured by oligo dT magnetic beads and streptavidin magnetic beads with 3'-biotinylated oligo DNA, which are complementary to the 3'-poly(A) and 5' terminal sequences of the target mRNA, respectively. Therefore, the target mRNA can be isolated from a complex mixture of splint ligations. Using this method, six sugar-modified mRNAs were simultaneously purified, and the translational activities of these mRNAs were evaluated immediately after purification. The results demonstrate that this methodology is suitable for the rapid preparation of various chemically synthesized mRNAs to identify their optimal modification patterns.
Collapse
Affiliation(s)
- Hiroki Yamada
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| | - Hiroto Iwai
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| | - Fumitaka Hashiya
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuaki Kimura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Hiroshi Abe
- Research Center for Materials Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
- CREST, Japan Science and Technology Agency, 7, Gobancho, Chiyoda-ku, Tokyo, 102-0076, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Junichiro Yamamoto
- Modality Research Laboratories 1, Research Unit, Research Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi, Machida, Tokyo, 194-8533, Japan
| |
Collapse
|
2
|
Peschke F, Taladriz-Sender A, Watson AJ, Burley GA. Reactivity Profiling for High-Yielding Ynamine-Tagged Oligonucleotide Click Chemistry Bioconjugations. Bioconjug Chem 2024; 35:1788-1796. [PMID: 39385696 PMCID: PMC11583209 DOI: 10.1021/acs.bioconjchem.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is a key ligation tool used to prepare bioconjugates. Despite the widespread utility of CuAAC to produce discrete 1,4-triazole products, the requirement of a Cu catalyst can result in oxidative damage to these products. Ynamines are superior reactive groups in CuAAC reactions and require lower Cu loadings to produce 1,4-triazole products. This study discloses a strategy to identify optimal reaction conditions for the formation of oligodeoxyribonucleotide (ODN) bioconjugates. First, the surveying of reaction conditions identified that the ratio of Cu to the choice of reductant (i.e., either sodium ascorbate or glutathione) influences the reaction kinetics and the rate of degradation of bioconjugate products. Second, optimized conditions were used to prepare a variety of ODN-tagged products and ODN-protein conjugates and compared to conventional CuAAC and Cu-free azide-alkyne (3 + 2)cycloadditions (SPAAC), with ynamine-based examples being faster in all cases. The reaction optimization platform established in this study provides the basis for its wider utility to prepare CuAAC-based bioconjugates with lower Cu loadings while maintaining fast reaction kinetics.
Collapse
Affiliation(s)
- Frederik Peschke
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
- Strathclyde
Centre for Molecular Bioscience, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Andrea Taladriz-Sender
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
- Strathclyde
Centre for Molecular Bioscience, University
of Strathclyde, Glasgow G1 1XL, U.K.
| | - Allan J.B. Watson
- EaStCHEM,
School of Chemistry, University of Saint
Andrews, North Haugh,
Fife, St Andrews KY16 9ST, United Kingdom
| | - Glenn A. Burley
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
- Strathclyde
Centre for Molecular Bioscience, University
of Strathclyde, Glasgow G1 1XL, U.K.
| |
Collapse
|
3
|
Warminski M, Depaix A, Ziemkiewicz K, Spiewla T, Zuberek J, Drazkowska K, Kedzierska H, Popielec A, Baranowski M, Sklucka M, Bednarczyk M, Smietanski M, Wolosewicz K, Majewski B, Serwa R, Nowis D, Golab J, Kowalska J, Jemielity J. Trinucleotide cap analogs with triphosphate chain modifications: synthesis, properties, and evaluation as mRNA capping reagents. Nucleic Acids Res 2024; 52:10788-10809. [PMID: 39248095 PMCID: PMC11472058 DOI: 10.1093/nar/gkae763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
The recent COVID-19 pandemics have demonstrated the great therapeutic potential of in vitro transcribed (IVT) mRNAs, but improvements in their biochemical properties, such as cellular stability, reactogenicity and translational activity, are critical for further practical applications in gene replacement therapy and anticancer immunotherapy. One of the strategies to overcome these limitations is the chemical modification of a unique mRNA 5'-end structure, the 5'-cap, which is responsible for regulating translation at multiple levels. This could be achieved by priming the in vitro transcription reaction with synthetic cap analogs. In this study, we combined a highly efficient trinucleotide IVT capping technology with several modifications of the 5' cap triphosphate bridge to synthesize a series of 16 new cap analogs. We also combined these modifications with epigenetic marks (2'-O-methylation and m6Am) characteristic of mRNA 5'-ends in higher eukaryotes, which was not possible with dinucleotide caps. All analogs were compared for their effect on the interactions with eIF4E protein, IVT priming, susceptibility to decapping, and mRNA translation efficiency in model cell lines. The most promising α-phosphorothiolate modification was also evaluated in an in vivo mouse model. Unexpected differences between some of the analogs were analyzed using a protein cell extract pull-down assay.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Anais Depaix
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Kamil Ziemkiewicz
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Karolina Drazkowska
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| | - Hanna Kedzierska
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Agnieszka Popielec
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Marek R Baranowski
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Marta Sklucka
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | | | - Miroslaw Smietanski
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Karol Wolosewicz
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Bartosz Majewski
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Remigiusz A Serwa
- Proteomics Core Facility, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Dominika Nowis
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
- Laboratory of Experimental Medicine, Faculty of Medicine, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland
| | - Jakub Golab
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Nielubowicza 5, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
- Explorna Therapeutics sp. z o.o, Zwirki i Wigury 93/2157, 02-089 Warsaw, Poland
| |
Collapse
|
4
|
Bartosik K, Micura R. Access to capped RNAs by chemical ligation. RSC Chem Biol 2024:d4cb00165f. [PMID: 39279877 PMCID: PMC11393730 DOI: 10.1039/d4cb00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024] Open
Abstract
A distinctive feature of eukaryotic mRNAs is the presence of a cap structure at the 5' end. The typical cap consists of 7-methylguanosine linked to the first transcribed nucleotide through a 5',5'-triphosphate bridge. It plays a key role in many processes in eukaryotic cells, including splicing, intracellular transport, initiation of translation and turnover. Synthetic capped oligonucleotides have served as useful tools for elucidating these physiological processes. In addition, cap mimics with artificial modifications are of interest for the design of mRNA-based therapeutics and vaccines. While the short cap mimics can be obtained by chemical synthesis, the preparation of capped analogs of mRNA length is still challenging and requires templated enzymatic ligation of synthetic RNA fragments. To increase the availability of capped mRNA analogs, we present here a practical and non-templated approach based on the use of click ligation resulting in RNAs bearing a single triazole linkage within the oligo-phosphate backbone. Capped RNA fragments with up to 81 nucleotides in length have thus been obtained in nanomolar yields and are in demand for biochemical, spectroscopic or structural studies.
Collapse
Affiliation(s)
- Karolina Bartosik
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82 6020 Innsbruck Austria
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82 6020 Innsbruck Austria
| |
Collapse
|
5
|
Lukaszewicz M. Application of Mammalian Nudix Enzymes to Capped RNA Analysis. Pharmaceuticals (Basel) 2024; 17:1195. [PMID: 39338357 PMCID: PMC11434898 DOI: 10.3390/ph17091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Following the success of mRNA vaccines against COVID-19, mRNA-based therapeutics have now become a great interest and potential. The development of this approach has been preceded by studies of modifications found on mRNA ribonucleotides that influence the stability, translation and immunogenicity of this molecule. The 5' cap of eukaryotic mRNA plays a critical role in these cellular functions and is thus the focus of intensive chemical modifications to affect the biological properties of in vitro-prepared mRNA. Enzymatic removal of the 5' cap affects the stability of mRNA in vivo. The NUDIX hydrolase Dcp2 was identified as the first eukaryotic decapping enzyme and is routinely used to analyse the synthetic cap at the 5' end of RNA. Here we highlight three additional NUDIX enzymes with known decapping activity, namely Nudt2, Nudt12 and Nudt16. These enzymes possess a different and some overlapping activity towards numerous 5' RNA cap structures, including non-canonical and chemically modified ones. Therefore, they appear as potent tools for comprehensive in vitro characterisation of capped RNA transcripts, with special focus on synthetic RNAs with therapeutic activity.
Collapse
Affiliation(s)
- Maciej Lukaszewicz
- Department of Biophysics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
6
|
Flemmich L, Bereiter R, Micura R. Chemical Synthesis of Modified RNA. Angew Chem Int Ed Engl 2024; 63:e202403063. [PMID: 38529723 DOI: 10.1002/anie.202403063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Ribonucleic acids (RNAs) play a vital role in living organisms. Many of their cellular functions depend critically on chemical modification. Methods to modify RNA in a controlled manner-both in vitro and in vivo-are thus essential to evaluate and understand RNA biology at the molecular and mechanistic levels. The diversity of modifications, combined with the size and uniformity of RNA (made up of only 4 nucleotides) makes its site-specific modification a challenging task that needs to be addressed by complementary approaches. One such approach is solid-phase RNA synthesis. We discuss recent developments in this field, starting with new protection concepts in the ongoing effort to overcome current size limitations. We continue with selected modifications that have posed significant challenges for their incorporation into RNA. These include deazapurine bases required for atomic mutagenesis to elucidate mechanistic aspects of catalytic RNAs, and RNA containing xanthosine, N4-acetylcytidine, 5-hydroxymethylcytidine, 3-methylcytidine, 2'-OCF3, and 2'-N3 ribose modifications. We also discuss the all-chemical synthesis of 5'-capped mRNAs and the enzymatic ligation of chemically synthesized oligoribonucleotides to obtain long RNA with multiple distinct modifications, such as those needed for single-molecule FRET studies. Finally, we highlight promising developments in RNA-catalyzed RNA modification using cofactors that transfer bioorthogonal functionalities.
Collapse
Affiliation(s)
- Laurin Flemmich
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Raphael Bereiter
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|
7
|
Warminski M, Trepkowska E, Smietanski M, Sikorski PJ, Baranowski MR, Bednarczyk M, Kedzierska H, Majewski B, Mamot A, Papiernik D, Popielec A, Serwa RA, Shimanski BA, Sklepkiewicz P, Sklucka M, Sokolowska O, Spiewla T, Toczydlowska-Socha D, Warminska Z, Wolosewicz K, Zuberek J, Mugridge JS, Nowis D, Golab J, Jemielity J, Kowalska J. Trinucleotide mRNA Cap Analogue N6-Benzylated at the Site of Posttranscriptional m6A m Mark Facilitates mRNA Purification and Confers Superior Translational Properties In Vitro and In Vivo. J Am Chem Soc 2024; 146:8149-8163. [PMID: 38442005 PMCID: PMC10979456 DOI: 10.1021/jacs.3c12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
Eukaryotic mRNAs undergo cotranscriptional 5'-end modification with a 7-methylguanosine cap. In higher eukaryotes, the cap carries additional methylations, such as m6Am─a common epitranscriptomic mark unique to the mRNA 5'-end. This modification is regulated by the Pcif1 methyltransferase and the FTO demethylase, but its biological function is still unknown. Here, we designed and synthesized a trinucleotide FTO-resistant N6-benzyl analogue of the m6Am-cap-m7GpppBn6AmpG (termed AvantCap) and incorporated it into mRNA using T7 polymerase. mRNAs carrying Bn6Am showed several advantages over typical capped transcripts. The Bn6Am moiety was shown to act as a reversed-phase high-performance liquid chromatography (RP-HPLC) purification handle, allowing the separation of capped and uncapped RNA species, and to produce transcripts with lower dsRNA content than reference caps. In some cultured cells, Bn6Am mRNAs provided higher protein yields than mRNAs carrying Am or m6Am, although the effect was cell-line-dependent. m7GpppBn6AmpG-capped mRNAs encoding reporter proteins administered intravenously to mice provided up to 6-fold higher protein outputs than reference mRNAs, while mRNAs encoding tumor antigens showed superior activity in therapeutic settings as anticancer vaccines. The biochemical characterization suggests several phenomena potentially underlying the biological properties of AvantCap: (i) reduced propensity for unspecific interactions, (ii) involvement in alternative translation initiation, and (iii) subtle differences in mRNA impurity profiles or a combination of these effects. AvantCapped-mRNAs bearing the Bn6Am may pave the way for more potent mRNA-based vaccines and therapeutics and serve as molecular tools to unravel the role of m6Am in mRNA.
Collapse
Affiliation(s)
- Marcin Warminski
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edyta Trepkowska
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | - Pawel J. Sikorski
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
- Laboratory
of Epitranscriptomics, Department of Environmental Microbiology and
Biotechnology, Institute of Microbiology, Faculty of Biology, Biological
and Chemical Research Centre, University
of Warsaw, 02-089 Warsaw, Poland
| | | | - Marcelina Bednarczyk
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Hanna Kedzierska
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Bartosz Majewski
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Adam Mamot
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Diana Papiernik
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Agnieszka Popielec
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Remigiusz A. Serwa
- Proteomics
Core Facility, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Brittany A. Shimanski
- Department
of Chemistry & Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Piotr Sklepkiewicz
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Marta Sklucka
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Olga Sokolowska
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Tomasz Spiewla
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | | | - Zofia Warminska
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Karol Wolosewicz
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Zuberek
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Jeffrey S. Mugridge
- Department
of Chemistry & Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Dominika Nowis
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
- Laboratory
of Experimental Medicine, Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Golab
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
- Laboratory
of Experimental Medicine, Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jacek Jemielity
- Centre
of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Kowalska
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
- Explorna
Therapeutics sp. z o.o. Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
8
|
Warminski M, Mamot A, Depaix A, Kowalska J, Jemielity J. Chemical Modifications of mRNA Ends for Therapeutic Applications. Acc Chem Res 2023; 56:2814-2826. [PMID: 37782471 PMCID: PMC10586375 DOI: 10.1021/acs.accounts.3c00442] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Indexed: 10/03/2023]
Abstract
Messenger ribonucleic acid (mRNA) is the universal cellular instruction for ribosomes to produce proteins. Proteins are responsible for most of the functions of living organisms, and their abnormal structure or activity is the cause of many diseases. mRNA, which is expressed in the cytoplasm and, unlike DNA, does not need to be delivered into the nucleus, appears to be an ideal vehicle for pursuing the idea of gene therapy in which genetic information about proteins is introduced into an organism to exert a therapeutic effect. mRNA molecules of any sequence can be synthesized using the same set of reagents in a cell-free system via a process called in vitro transcription (IVT), which is very convenient for therapeutic applications. However, this does not mean that the path from the idea to the first mRNA-based therapeutic was short and easy. It took 30 years of trial and error in the search for solutions that eventually led to the first mRNA vaccines created in record time during the SARS-CoV-2 pandemic. One of the fundamental problems in the development of RNA-based therapeutics is the legendary instability of mRNA, due to the transient nature of this macromolecule. From the chemical point of view, mRNA is a linear biopolymer composed of four types of ribonucleic subunits ranging in length from a few hundred to hundreds of thousands of nucleotides, with unique structures at its ends: a 5'-cap at the 5'-end and a poly(A) tail at the 3'-end. Both are extremely important for the regulation of translation and mRNA durability. These elements are also convenient sites for sequence-independent labeling of mRNA to create probes for enzymatic assays and tracking of the fate of mRNA in cells and living organisms. Synthetic 5'-cap analogs have played an important role in the studies of mRNA metabolism, and some of them have also been shown to significantly improve the translational properties of mRNA or affect mRNA stability and reactogenicity. The most effective of these is used in clinical trials of mRNA-based anticancer vaccines. Interestingly, thanks to the knowledge gained from the biophysical studies of cap-related processes, even relatively large modifications such as fluorescent tags can be attached to the cap structure without significant effects on the biological properties of the mRNA, if properly designed cap analogs are used. This has been exploited in the development of molecular tools (fluorescently labeled mRNAs) to track these macromolecules in complex biological systems, including organisms. These tools are extremely valuable for better understanding of the cellular mechanisms involved in mRNA metabolism but also for designing therapeutic mRNAs with superior properties. Much less is known about the usefulness/utility of poly(A) tail modifications in the therapeutic context, but it is clear that chemical modifications of poly(A) can also affect biochemical properties of mRNA. This Account is devoted to chemical modifications of both the 5'- and 3'-ends of mRNA aimed at improving the biological properties of mRNA, without interfering with its translational function, and is based on the authors' more than 20 years of experience in this field.
Collapse
Affiliation(s)
- Marcin Warminski
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Adam Mamot
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Anaïs Depaix
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre
of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|