1
|
Gujja V, Sadineni K, Koppula SK, Basireddy A, Venkanna B, Gunda SK. New 1,3,4‒oxadiazole Quinazolines as Potential Anticancer Agents: Design, Synthesis, Biological Evaluation, and In silico Studies. Curr Drug Discov Technol 2025; 22:e090424228867. [PMID: 38616757 DOI: 10.2174/0115701638282655240402042126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND A novel series of 1,3,4‒oxadiazole connected to derivatives of quinazolinone (7a-e and 8a-f) was synthesized in the current investigation, and its anticancer and Topoisomerase‒ II inhibitory activity was evaluated. OBJECTIVE These findings inspired the design, synthesis, and biological analysis of these 1,3,4‒oxadiazole-quinazolinone analogues as antiproliferative Topo‒II inhibitors. METHODS The novel compound structures were determined using mass spectrometry and spectral methods (IR, NMR: 1H & 13C). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colourimetric assay has been used to evaluate the anticancer efficacy of these drugs, and Autodock 4.2 provides a description of the docking results. For the more active members, additional biological tests, such as the Topo‒II inhibition experiment, were performed. These compounds' physicochemical and ADMET characteristics were examined in more detail. RESULTS In the experiment for antiproliferative activity, compounds 7d, 7e, 8c, 8e, and 8f demonstrated encouraging cytotoxicity findings against HCT‒116 and HepG2 cancer cell lines, with IC50 values ranging from 3.85 to 19.43 μM. Compounds 7d, 7e, and 8e were the most potent inhibitors of Topo II with IC50 values of 15.18, 17.55, and 12.59 μM, respectively. Additionally, the docked compound 8c showed the strongest conventional hydrogen bonds among the residues Leu507(B), Asn508(B), Asn520(B), and Glu522(B) in the Human topoisomerase‒IIβ active site in the DNA complex (4G0U) when compared to the findings of docking experiments. CONCLUSION New findings have discovered the fact that fused 1,3,4‒oxadiazole bearing quinazolinone contributed great significance in the field of medicinal chemistry due to their diverse biological properties. Finally, the in silico pharmacokinetic profile of all the synthesized derivatives was estimated using SwissADME, where some of the compounds followed Lipinski, Veber, Egan, and Muegge rules without deviation. The result of this activity advises that with a simple modification in structure, a potent anticancer agent can be generated with good efficacy.
Collapse
Affiliation(s)
- Venkanna Gujja
- Department of Chemistry, Gitam Deemed to be University, Hyderabad campus, Rudraram, Sangareddy, Hyderabad, 502329, Telangana, India
| | - Kumaraswamy Sadineni
- Department of Chemistry, Gitam Deemed to be University, Hyderabad campus, Rudraram, Sangareddy, Hyderabad, 502329, Telangana, India
| | - Shiva Kumar Koppula
- Department of Chemistry, Gitam Deemed to be University, Hyderabad campus, Rudraram, Sangareddy, Hyderabad, 502329, Telangana, India
| | - Avanthi Basireddy
- Department of Chemistry, School of Applied Sciences and Humanities, VFSTR (Deemed to be University), Vadlamudi, Guntur, Andhra Pradesh, 522213, India
- Department of Chemistry, Malla Reddy Institute of Technology and Science, Maisammaguda, Dulapally, Hyderabad, Telangana, 500100, India
| | - Banothu Venkanna
- Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, 500085, Telangana, India
| | - Shravan Kumar Gunda
- Bioinformatics Division, PGRRCDE, Osmania University, Tarnaka, Hyderabad, 500007, Telangana, India
| |
Collapse
|
2
|
Mostafa YA, Assoud JA, Desoky AY, Mohamady S, Mohamed NM, Salem OIA, Almarhoon ZM, Bräse S, Youssif BGM. New series of 4,6-diaryl pyrimidines: facile synthesis and antiproliferative activity as dual EGFR/VEGFR-2 inhibitors. Front Chem 2024; 12:1498104. [PMID: 39569013 PMCID: PMC11576293 DOI: 10.3389/fchem.2024.1498104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction We developed and produced a new series of 4,6-diaryl-pyrimidines 9-29 as antiproliferative agents targeting EGFR/VEGFR-2. Methods The antiproliferative efficacy of the novel targets was assessed against a panel of 60 NCI cancer cell lines and four cancer cell lines in vitro. Results and Discussion Compounds 14, 17, 19, 22, 25, and 29 demonstrated the greatest potency among the derivatives, with GI50 values between 22 and 33 nM; compounds 22 and 29 exhibited the highest potency, with GI50 values of 22 and 24 nM, respectively. We subsequently examined the most efficient derivatives as dual EGFR/VEGFR-2 inhibitors, finding that compounds 22 and 29 functioned as dual inhibitors. Moreover, 22 and 29 can act as apoptotic inducers by increasing Bax levels and decreasing levels of the anti-apoptotic protein Bcl2. At both 24- and 48-h intervals, the cell migration rates of compounds 22 and 29 were lower than those of untreated cells, according to the migration rate and wound closure percentage assessment. The wound closure rate reached 100% after 72 h of therapy with compound 22 but only 80% with compound 29. The docking study showed that compounds 22 and 29 had docking scores similar to those of Erlotinib and Sorafenib, co-crystallized ligands, for the EGFR and VEGFR-2 proteins. The experiments on lipophilicity showed that the new pyrimidines had a consistent result. This group of compounds has better biological activity in all the biological systems studied with low lipophilicity.
Collapse
Affiliation(s)
- Yaser A Mostafa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut, Assiut, Egypt
| | | | - Ahmed Y Desoky
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | - Samy Mohamady
- Faculty of Pharmacy, The British University in Egypt, Al-Sherouk, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Assiut, Assiut, Egypt
| | - Ola I A Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Khamees Thabet H, Ragab A, Imran M, Helal MH, Ibrahim Alaqel S, Alshehri A, Ash Mohd A, Rakan Alshammari M, S Abusaif M, A Ammar Y. Discovery of new anti-diabetic potential agents based on paracetamol incorporating sulfa-drugs: Design, synthesis, α-amylase, and α-glucosidase inhibitors with molecular docking simulation. Eur J Med Chem 2024; 275:116589. [PMID: 38878516 DOI: 10.1016/j.ejmech.2024.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Uncontrolled diabetes can lead to hyperglycemia, which causes neuropathy, heart attacks, retinopathy, and nervous system damage over time, therefore, controlling hyperglycemia using potential drug target inhibitors is a promising strategy. This work focused on synthesizing new derivatives via the diazo group, using a hybridization strategy involving two approved drugs, paracetamol and several sulfonamides. The newly designed diazo-paracetamols 5-12 were fully characterized and then screened for in vitro α-amylase and α-glucosidase activities and exhibited inhibitory percentages (IP) = 92.5-96.5 % and 91.0-95.7 % compared to Acarbose IP = 96.5 and 95.8 %, respectively at 100 μg/mL. The IC50 values of the synthesized derivatives were evaluated against α-amylase and α-glucosidase enzymes, and the results demonstrated moderate to potent activity. Among the tested diazo-paracetamols, compound 11 was found to have the highest potency activity against α-amylase with IC50 value of 0.98 ± 0.015 μM compared to Acarbose IC50 = 0.43 ± 0.009 μM, followed by compound 10 (IC50 = 1.55 ± 0.022 μM) and compound 9 (IC50 = 1.59 ± 0.023 μM). On the other hand, for α-glucosidase, compound 10 with pyrimidine moiety demonstrated the highest inhibitory activity with IC50 = 1.39 ± 0.021 μM relative to Acarbose IC50 = 1.24 ± 0.029 μM and the order of the most active derivatives was 10 > 9 (IC50 = 2.95 ± 0.046 μM) > 11 (IC50 = 5.13 ± 0.082 μM). SAR analysis confirmed that the presence of 4,5-dimethyl-isoxazole or pyrimidine nucleus attached to the sulfonyl group is important for activity. Finally, the docking simulation was achieved to determine the mode of binding interactions for the most active derivatives in the enzyme's active site.
Collapse
Affiliation(s)
- Hamdy Khamees Thabet
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Mohamed Hamdy Helal
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Saleh Ibrahim Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia; Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam, 31441, Saudi Arabia
| | - Abida Ash Mohd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Malek Rakan Alshammari
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha, 91911, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| |
Collapse
|
4
|
Thabet HK, Abusaif MS, Imran M, Helal MH, Alaqel SI, Alshehri A, Mohd AA, Ammar YA, Ragab A. Discovery of novel 6-(piperidin-1-ylsulfonyl)-2H-chromenes targeting α-glucosidase, α-amylase, and PPAR-γ: Design, synthesis, virtual screening, and anti-diabetic activity for type 2 diabetes mellitus. Comput Biol Chem 2024; 111:108097. [PMID: 38772048 DOI: 10.1016/j.compbiolchem.2024.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
A new series of 2H-chromene-based sulfonamide derivatives 3-12 has been synthesized and characterized using different spectroscopic techniques. The synthesized 2H-chromenes were synthesized by reacting activated methylene with 5-(piperidin-1-ylsulfonyl)salicylaldehyde through one-step condensation followed by intramolecular cyclization. Virtual screening of the designed molecules on α-glucosidase enzymes (PDB: 3W37 and 3A4A) exhibited good binding affinity suggesting that these derivatives may be potential α-glucosidase inhibitors. In-vitro α-glucosidase activity was conducted firstly at 100 µg/mL, and the results demonstrated good inhibitory potency with values ranging from 90.6% to 96.3% compared to IP = 95.8% for Acarbose. Furthermore, the IC50 values were determined, and the designed derivatives exhibited inhibitory potency less than 11 µg/mL. Surprisingly, two chromene derivatives 6 and 10 showed the highest potency with IC50 values of 0.975 ± 0.04 and 0.584 ± 0.02 µg/mL, respectively, compared to Acarbose (IC50 = 0.805 ± 0.03 µg/mL). Moreover, our work was extended to evaluate the in-vitro α-amylase and PPAR-γ activity as additional targets for diabetic activity. The results exhibited moderate activity on α-amylase and potency as PPAR-γ agonist making it a multiplet antidiabetic target. The most active 2H-chromenes 6 and 10 exhibited significant activity to PPAR-γ with IC50 values of 3.453 ± 0.14 and 4.653 ± 0.04 µg/mL compared to Pioglitazone (IC50 = 4.884±0.29 µg/mL) indicating that these derivatives improve insulin sensitivity by stimulating the production of small insulin-sensitive adipocytes. In-silico ADME profile analysis indicated compliance with Lipinski's and Veber's rules with excellent oral bioavailability properties. Finally, the docking simulation was conducted to explain the expected binding mode and binding affinity.
Collapse
Affiliation(s)
- Hamdy Khamees Thabet
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha 91911, Saudi Arabia.
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohamed Hamdy Helal
- Department of Chemistry, College of Sciences and Arts, Northern Border University, Rafha 91911, Saudi Arabia
| | - Saleh Ibrahim Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Ahmed Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam 31441, Saudi Arabia
| | - Abida Ash Mohd
- Department of Pharmacology and Toxicology, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| |
Collapse
|
5
|
Abedin MM, Pal TK, Chanmiya Sheikh M, Alam MA. Investigation on synthesized sulfonamide Schiff base with DFT approaches and in silico pharmacokinetic studies: Topological, NBO, and NLO analyses. Heliyon 2024; 10:e34499. [PMID: 39130455 PMCID: PMC11315171 DOI: 10.1016/j.heliyon.2024.e34499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
The sulfonamide Schiff base (C16H14N4O3S) was successfully synthesized and experimentally ascertained. The main purpose of this research is to investigate the geometry of the aforesaid molecule using both experimental and density functional theory (DFT) techniques and determine its drug likeness characteristics, docking ability as an insulysin inhibitor, and its NLO property. For the computational investigations the DFT approaches were utilized at the B3LYP level with the 6-311G+(d,p) basic set. The experimental results of the compound (such as FT-IR, UV-Vis, and 1H NMR) were compared with simulated data. The both results were well and consistent with previously related published data. The obtained spectral results confirm the formation of the Schiff base compound. Both π-π* and n-π* interactions were found in experimental and computational UV-Vis spectra, as well as in the natural bond orbital (NBO) study. The molecular, electronic, covalent, and non-covalent interactions were analyzed using DFT studies. Both experimental and simulation results revealed that the compound is successfully formed and relatively stable. The compound with a lower band gap showed high chemical reactivity. The medicinal characteristics of the compound were evaluated using in silico medicinal methods. The investigated compound was also followed Pfizer, Golden Triangle, GSK as well as Lipinski's rules. Therefore, the compound has more favorable absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile and it can be used as non-toxic oral drug candidate. The compound was exhibited good insulysin inhibitory activity and it has almost eighteen times higher non-linear optical properties than urea and three times higher than potassium dihydrogen phosphate (KDP).
Collapse
Affiliation(s)
- Md Minhazul Abedin
- Department of Chemistry, Rajshahi University of Engineering & Technology, 6204, Bangladesh
| | - Tarun Kumar Pal
- Department of Chemistry, Rajshahi University of Engineering & Technology, 6204, Bangladesh
| | | | - Md Ashraful Alam
- Department of Chemistry, Rajshahi University of Engineering & Technology, 6204, Bangladesh
| |
Collapse
|
6
|
Ragab A, Salem MA, Ammar YA, Aboulthana WM, Helal MH, Abusaif MS. Explore new quinoxaline pharmacophore tethered sulfonamide fragments as in vitro α-glucosidase, α-amylase, and acetylcholinesterase inhibitors with ADMET and molecular modeling simulation. Drug Dev Res 2024; 85:e22216. [PMID: 38831547 DOI: 10.1002/ddr.22216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
A new series of quinoxaline-sulfonamide derivatives 3-12 were synthesized using fragment-based drug design by reaction of quinoxaline sulfonyl chloride (QSC) with different amines and hydrazines. The quinoxaline-sulfonamide derivatives were evaluated for antidiabetic and anti-Alzheimer's potential against α-glucosidase, α-amylase, and acetylcholinesterase enzymes. These derivatives showed good to moderate potency against α-amylase and α-glucosidase with inhibitory percentages between 24.34 ± 0.01%-63.09 ± 0.02% and 28.95 ± 0.04%-75.36 ± 0.01%, respectively. Surprisingly, bis-sulfonamide quinoxaline derivative 4 revealed the most potent activity with inhibitory percentages of 75.36 ± 0.01% and 63.09 ± 0.02% against α-glucosidase and α-amylase compared to acarbose (IP = 57.79 ± 0.01% and 67.33 ± 0.01%), respectively. Moreover, the quinoxaline derivative 3 exhibited potency as α-glucosidase and α-amylase inhibitory with a minute decline from compound 4 and acarbose with inhibitory percentages of 44.93 ± 0.01% and 38.95 ± 0.01%. Additionally, in vitro acetylcholinesterase inhibitory activity for designed derivatives exhibited weak to moderate activity. Still, sulfonamide-quinoxaline derivative 3 emerged as the most active member with inhibitory percentage of 41.92 ± 0.02% compared with donepezil (IP = 67.27 ± 0.60%). The DFT calculations, docking simulation, target prediction, and ADMET analysis were performed and discussed in detail.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail, Assir, Saudi Arabia
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, Nasr, Cairo, Egypt
| |
Collapse
|
7
|
Naglah AM, Almehizia AA, Al-Wasidi AS, Alharbi AS, Alqarni MH, Hassan AS, Aboulthana WM. Exploring the Potential Biological Activities of Pyrazole-Based Schiff Bases as Anti-Diabetic, Anti-Alzheimer's, Anti-Inflammatory, and Cytotoxic Agents: In Vitro Studies with Computational Predictions. Pharmaceuticals (Basel) 2024; 17:655. [PMID: 38794225 PMCID: PMC11125359 DOI: 10.3390/ph17050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In this innovative research, we aim to reveal pyrazole-based Schiff bases as new multi-target agents. In this context, we re-synthesized three sets of pyrazole-based Schiff bases, 5a-f, 6a-f, and 7a-f, to evaluate their biological applications. The data from in vitro biological assays (including antioxidant and scavenging activities, anti-diabetes, anti-Alzheimer's, and anti-inflammatory properties) of the pyrazole-based Schiff bases 5a-f, 6a-f, and 7a-f showed that the six pyrazole-based Schiff bases 5a, 5d, 5e, 5f, 7a, and 7f possess the highest biological properties among the compounds evaluated. The cytotoxicity against lung (A549) and colon (Caco-2) human cancer types, as well as normal lung (WI-38) cell lines, was evaluated. The data from the cytotoxicity investigation demonstrated that the three Schiff bases 5d, 5e, and 7a are active against lung (A549) cells, while the two Schiff bases 5e and 7a exhibited the highest cytotoxicity towards colon (Caco-2) cells. Additionally, the enzymatic activities against caspase-3 and Bcl-2 of the six pyrazole-based Schiff bases 5a, 5d, 5e, 5f, 7a, and 7f were evaluated. Furthermore, we assessed the in silico absorption, distribution, metabolism, and toxicity (ADMT) properties of the more potent pyrazole-based Schiff bases. After modifying the structures of the six pyrazole-based Schiff bases, we plan to further extend the studies in the future.
Collapse
Affiliation(s)
- Ahmed M. Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdulrahman A. Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Asma S. Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Amirah Senaitan Alharbi
- King Khalid Hospital, King Saud University Medical City, P.O. Box 7805, Riyadh 11472, Saudi Arabia;
| | - Mohammed H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Ashraf S. Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Dokki 12622, Cairo, Egypt
| | - Wael M. Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki 12622, Cairo, Egypt;
| |
Collapse
|
8
|
Sadineni K, Reddy Basireddy S, Rao Allaka T, Yatam S, Bhoomandla S, Muvvala V, Babu Haridasyam S. Design, Synthesis and In vitro Antitubercular Effect of New Chalcone Derivatives Coupled with 1,2,3-Triazoles: A Computational Docking Techniques. Chem Biodivers 2024; 21:e202400389. [PMID: 38457745 DOI: 10.1002/cbdv.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/10/2024]
Abstract
A very interesting foundation for this study is the creation of new methods for modifying compounds with a 1,2,3-triazole and chalcone scaffolds, as these compounds are significant in organic synthesis, particularly in the synthesis of bioactive organic compounds. To contribute to the development of an efficient method for the conversion of antimicrobial and antituberculosis heterocyclics, a novel series of cyclohepta pyridinone fused 1,2,3-triazolyl chalcones were designed and synthesized. All the newly prepared scaffolds were characterized by FT-IR, NMR (1H & 13C) and mass spectrometry. Among the tested compounds, hybrids 8b, 8d, and 8f exhibited exceptional antibacterial susceptibilities with zone of inhibition 27.84±0.04, 32.27±0.02, and 38.26±0.01 mm against the tested E. faecalis bacteria, whereas 8d had better antitubercular potency against M. tuberculosis H37Rv strain with MIC value 5.25 μg/mL, compared to Streptomycin [MIC=5.01 μg/mL]. All the synthesized compounds were initially assessed in silico against the targeted protein i. e., DprE1 that indicated compound 8d, 8f and 8h along with several other 1,2,3-triazole compounds as possible inhibitors. Based on docking results, 8d showed that the amino acids His74(A), Lys76(A), Cys332(A), Asp331(A), Val307(A), Tyr357(A), Met226(A), Gln276(A), Gly75(A), Peo58(A), Leu259(A), and Lys309(A) exhibited highly stable binding to DprE1 receptor of Mycobacterium tuberculosis (PDB: 4G3 U). Moreover, these scaffolds physicochemical characteristics, filtration molecular properties, assessment of toxicity, and bioactivity scores were assessed in relation to ADME (absorption, distribution, metabolism, and excretion).
Collapse
Affiliation(s)
- Kumaraswamy Sadineni
- Department of Chemistry, School of Science, Gitam deemed to be University, Hyderabad campus, Rudraram, Hyderabad-502329, Telangana, India
| | - Sravanthi Reddy Basireddy
- Department of Chemistry, Institute of Aeronautical Engineering, Dundigal, Hyderabad, Telangana-500043, India
- Department of Chemistry, GITAM Institute of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, University College of Engineering, Science and Technology Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Hyderabad, Telangana-500085, India
| | - Satyanarayana Yatam
- A1Biochem Labs (India) Pvt LTD, Pragathi Nagar, Kukatpally, Hyderabad-500072, Telangana, India
| | - Srinu Bhoomandla
- Department of Chemistry, School of Science, Gitam deemed to be University, Hyderabad campus, Rudraram, Hyderabad-502329, Telangana, India
- Department of Chemistry, Geethanjali College of Engineering and Technology (Autonomous), Cheeryal, Medchal-501301, Telangana, India
| | - Venkatanaryana Muvvala
- Department of Chemistry, School of Science, Gitam deemed to be University, Hyderabad campus, Rudraram, Hyderabad-502329, Telangana, India
| | - Sharath Babu Haridasyam
- Department of Chemistry, School of Science, Gitam deemed to be University, Hyderabad campus, Rudraram, Hyderabad-502329, Telangana, India
| |
Collapse
|
9
|
Mushtaq A, Asif R, Humayun WA, Naseer MM. Novel isatin-triazole based thiosemicarbazones as potential anticancer agents: synthesis, DFT and molecular docking studies. RSC Adv 2024; 14:14051-14067. [PMID: 38686286 PMCID: PMC11057040 DOI: 10.1039/d4ra01937g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Thiosemicarbazones of isatin have been found to exhibit versatile bioactivities. In this study, two distinct types of isatin-triazole hybrids 3a and 3b were accessed via copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC), together with their mono and bis-thiosemicarbazone derivatives 4a-h and 5a-h. In addition to the characterization by physical, spectral and analytical data, a DFT study was carried out to obtain the optimized geometries of all thiosemicarbazones. The global reactivity values showed that among the synthesized derivatives, 4c, 4g and 5c having nitro substituents are the most soft compounds, with compound 5c having the highest electronegativity and electrophilicity index values among the synthesized series, thus possessing strong binding ability with biomolecules. Molecular docking studies were performed to explore the inhibitory ability of the selected compounds against the active sites of the anticancer protein of phosphoinositide 3-kinase (PI3K). Among the synthesized derivatives, 4-nitro substituted bisthiosemicarbazone 5c showed the highest binding energy of -10.3 kcal mol-1. These findings demonstrated that compound 5c could be used as a favored anticancer scaffold via the mechanism of inhibition against the PI3K signaling pathways.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Rabbia Asif
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Waqar Ahmed Humayun
- Department of Medical Oncology & Radiotherapy, King Edward Medical University Lahore 54000 Pakistan
| | | |
Collapse
|
10
|
Baddam SR, Avula MK, Akula R, Battula VR, Kalagara S, Buchikonda R, Ganta S, Venkatesan S, Allaka TR. Design, synthesis and in silico molecular docking evaluation of novel 1,2,3-triazole derivatives as potent antimicrobial agents. Heliyon 2024; 10:e27773. [PMID: 38590856 PMCID: PMC10999864 DOI: 10.1016/j.heliyon.2024.e27773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Chalcone and triazole scaffolds have demonstrated a crucial role in the advancement of science and technology. Due to their significance, research has proceeded on the design and development of novel benzooxepine connected to 1,2,3-triazolyl chalcone structures. The new chalcone derivatives produced by benzooxepine triazole methyl ketone 2 and different aromatic carbonyl compounds 3 are discussed in this paper. All prepared compounds have well-established structures to a variety of spectral approaches, including mass analysis, 1H NMR, 13C NMR, and IR. Among the tested compounds, hybrids 4c, 4d, 4i, and 4k exhibited exceptional antibacterial susceptibilities with MIC range of 3.59-10.30 μM against the tested S. aureus strain. Compounds 4c, 4d displayed superior antifungal activity against F. oxysporum with MIC 3.25, 4.89 μM, when compared to fluconazole (MIC = 3.83 μM) respectively. On the other hand, analogues 4d, 4f, and 4k demonstrated equivalent antitubercular action against H37Rv strain with MIC range of 2.16-4.90 μM. The capacity of ligand 4f to form a stable compound on the active site of CYP51 from M. tuberculosis (1EA1) was confirmed by docking studies using amino acids Leu321(A), Pro77(A), Phe83(A), Lys74(A), Tyr76(A), Ala73(A), Arg96(A), Thr80(A), Met79(A), His259(A), and Gln72(A). Additionally, the chalcone‒1,2,3‒triazole hybrids ADME (absorption, distribution, metabolism, and excretion), characteristics of molecules, estimations of toxicity, and bioactivity parameters were assessed.
Collapse
Affiliation(s)
- Sudhakar Reddy Baddam
- University of Massachusetts Chan Medical School, RNA Therapeutic Institute, Worcester, MA, 01655, United States
| | - Mahesh Kumar Avula
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Pvt. Ltd., Hyderabad, Telangana, 500049, India
- Department of Organic Chemistry and FDW, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Raghunadh Akula
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Pvt. Ltd., Hyderabad, Telangana, 500049, India
| | - Venkateswara Rao Battula
- Department of Chemistry, AU College of Engineering (A), Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Sudhakar Kalagara
- Department of Chemistry and Biochemistry, University of the Texas at El Paso, El Paso, TX, 79968, United States
| | - Ravinder Buchikonda
- Technology Development Center, Custom Pharmaceutical Services, Dr. Reddy's Laboratories Pvt. Ltd., Hyderabad, Telangana, 500049, India
| | - Srinivas Ganta
- ScieGen Pharmaceutical Inc., Hauppauge, NY, 11788, United States
| | - Srinivasadesikan Venkatesan
- Department of Chemistry, School of Applied Science and Humanities, VIGNAN's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, 522213, India
| | - Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| |
Collapse
|
11
|
Almehizia AA, Aboulthana WM, Naglah AM, Hassan AS. In vitro biological studies and computational prediction-based analyses of pyrazolo[1,5- a]pyrimidine derivatives. RSC Adv 2024; 14:8397-8408. [PMID: 38476172 PMCID: PMC10928850 DOI: 10.1039/d4ra00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
There is a need for new pharmaceutical discoveries from bioactive nitrogenous derivatives due to the emergence of scourges, numerous pandemics, and diverse health problems. In this context, pyrazolo[1,5-a]pyrimidine derivatives 12a and 12b were synthesized and screened to evaluate their biological potentials in vitro as antioxidants, anti-diabetics, anti-Alzheimer's, anti-arthritics, and anti-cancer agents. Additionally, the computational pharmacokinetic and toxicity properties of the two pyrazolo[1,5-a]pyrimidines 12a and 12b were calculated and analyzed. The preliminary studies and results of this work represent the initial steps toward more advanced studies and define the bioactive chemical structure of pyrazolo[1,5-a]pyrimidine derivatives with the goal of exploring new drugs to address numerous health problems.
Collapse
Affiliation(s)
- Abdulrahman A Almehizia
- Drug Exploration & Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre Dokki 12662 Cairo Egypt
| | - Ahmed M Naglah
- Drug Exploration & Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Riyadh 11451 Saudi Arabia
| | - Ashraf S Hassan
- Organometallic and Organometalloid Chemistry Department, National Research Centre Dokki 12622 Cairo Egypt
| |
Collapse
|
12
|
Kumar S, Mahajan A, Ambatwar R, Khatik GL. Recent Advancements in the Treatment of Alzheimer's Disease: A Multitarget-directed Ligand Approach. Curr Med Chem 2024; 31:6032-6062. [PMID: 37861025 DOI: 10.2174/0109298673264076230921065945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and one of the leading causes of progressive dementia, affecting 50 million people worldwide. Many pathogenic processes, including amyloid β aggregation, tau hyperphosphorylation, oxidative stress, neuronal death, and deterioration of the function of cholinergic neurons, are associated with its progression. The one-compound-one-target treatment paradigm was unsuccessful in treating AD due to the multifaceted nature of Alzheimer's disease. The recent development of multitarget-directed ligand research has been explored to target the complementary pathways associated with the disease. We aimed to find the key role and progress of MTDLs in treating AD; thus, we searched for the past ten years of literature on "Pub- Med", "ScienceDirect", "ACS" and "Bentham Science" using the keywords neurodegenerative diseases, Alzheimer's disease, and multitarget-directed ligands. The literature was further filtered based on the quality of work and relevance to AD. Thus, this review highlights the current advancement and advantages of multitarget-directed ligands over traditional single-targeted drugs and recent progress in their development to treat AD.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Amol Mahajan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| |
Collapse
|
13
|
Ragab A, Ibrahim SA, Aboul-Magd DS, Baren MH. One-pot synthesis of pyrazolo[4,3- d]thiazole derivatives containing α-aminophosphonate as potential Mur A inhibitors against MDR pathogens with radiosterilization and molecular modeling simulation. RSC Adv 2023; 13:34756-34771. [PMID: 38035237 PMCID: PMC10685179 DOI: 10.1039/d3ra07040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
The present study involves the synthesis of a new series of α-aminophosphonate derivatives in good yields with a simple workup via the Kabachnik-Fields reaction using lithium perchlorate (LiClO4) as a catalyst to facilitate the reaction. All the newly synthesized compounds were confirmed using various physical, spectroscopic, and analytical data, and the obtained results correlated with the proposed molecular structure. The in vitro antimicrobial activities of each compound were evaluated against different clinical isolates. The results indicated that among these derivatives, two compounds (5a and 5b) were the most active and displayed potent activity with MICs in the range from 0.06 to 0.25 μg mL-1 compared with fosfomycin and fluconazole as standard antibiotics. Moreover, the synthesized phosphonates displayed a broad spectrum of bactericidal and fungicidal activities depending on MICs, MBCs/MFCs, and the time-kill kinetics. In addition, the checkerboard assay showed synergistic and partial synergistic activities between the active compounds combined with fosfomycin and fluconazole. Furthermore, the SEM images showed distinct ruptures of the OM integrity of the FOS-R E. coli at their MICs, which was further indicated by the increased EtBr accumulation within the bacterial cells. Moreover, active derivatives revealed MurA inhibitory activity with IC50 values of 3.8 ± 0.39 and 4.5 ± 0.23 μM compared with fosfomycin (IC50 = 12.7 ± 0.27 μM). To our surprise, exposing 5a and 5b compounds to different gamma radiation doses revealed that 7.0 kGy eradicated the microbial load completely. Finally, the results of quantum chemical study supported the binding mode obtained from the docking study performed inside the active site of MurA (PDB: 1UAE), suggesting that these phosphonates may be promising safe candidates for MDR infection therapy clinical trials with no toxic effects on the normal human cells.
Collapse
Affiliation(s)
- Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Seham A Ibrahim
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority Egypt
| | - Mohamed H Baren
- Chemistry Department, Faculty of Science, Tanta University Tanta 31527 Egypt
| |
Collapse
|
14
|
Ammar YA, Ragab A, Migahed MA, Al-Sharbasy S, Salem MA, Riad OKM, Selim HMRM, Abd-Elmaksoud GA, Abusaif MS. Design, green synthesis, and quorum sensing quenching potential of novel 2-oxo-pyridines containing a thiophene/furan scaffold and targeting a LasR gene on P. aeruginosa. RSC Adv 2023; 13:27363-27384. [PMID: 37711372 PMCID: PMC10498153 DOI: 10.1039/d3ra04230h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
The current trend in fighting bacteria is attacking the virulence and quorum-sensing (QS) signals that control bacterial communication and virulence factors, especially biofilm formation. This study reports new Schiff bases and tetracyclic rings based on a pyridine pharmacophore by two methods: a green approach using CAN and a conventional method. The structure of designed derivatives was confirmed using different spectroscopies (IR and 1H/13C NMR) and elemental analysis. The designed derivatives exhibited good to moderate inhibition zones against bacterial and fungal pathogens. In addition, six compounds 2a,b, 3a,b, and 6a,b displayed potency against tested pathogens with eligible MIC and MBC values compared to standard antimicrobial agents. Compound 2a displayed MIC values of 15.6 μg mL-1 compared to Gentamicin (MIC = 250 μg mL-1 against K. pneumoniae), while compound 6b exhibited super-potent activity against P. aeruginosa, and K. pneumoniae with MIC values of 62.5 and 125 μg mL-1, as well as MBC values of 31.25 and 15.6 μg mL-1 compared to Gentamicin (MIC = 250 and 125 μg mL-1 and MBC = 62.5 μg mL-1), respectively. Surprisingly, these six derivatives revealed bactericidal and fungicidal potency and remarkable anti-biofilm activity that could significantly reduce the biofilm formation against MRSA, E. coli, P. aeruginosa, and C. albicans. Furthermore, the most active derivatives reduced the LasR gene's production between 10-40% at 1/8 MICs compared with untreated P. aeruginosa. Besides, they demonstrated promising safety profile on Vero cells (normal cell lines) with IC50 values ranging between (175.17 ± 3.49 to 344.27 ± 3.81 μg mL-1). In addition, the in silico ADMET prediction was carried out and the results revealed that these compounds could be used with oral bioavailability with low toxicity prediction when administered as a candidate drug. Finally, the molecular docking simulation was performed inside LasR and predicted the key binding interactions responsible for the activity that corroborated the biological results.
Collapse
Affiliation(s)
- Yousry A Ammar
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - M A Migahed
- Egyptian Petroleum Research Institute (EPRI) 11727 Nasr City Cairo Egypt
| | - S Al-Sharbasy
- Department of Chemistry, Faculty of Science (girls), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University Mohail Assir Saudi Arabia
| | - Omnia Karem M Riad
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University Nasr City Cairo Egypt
| | - Heba Mohammed Refat M Selim
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University Nasr City Cairo Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Maarefa University Diriyah 13713 Riyadh Saudi Arabia
| | - Gehad A Abd-Elmaksoud
- Department of Chemistry, Faculty of Science (girls), Al-Azhar University 11884 Nasr City Cairo Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University 11884 Nasr City Cairo Egypt
| |
Collapse
|
15
|
Ismail MA, Abusaif MS, El-Gaby MSA, Ammar YA, Ragab A. A new class of anti-proliferative activity and apoptotic inducer with molecular docking studies for a novel of 1,3-dithiolo[4,5- b]quinoxaline derivatives hybrid with a sulfonamide moiety. RSC Adv 2023; 13:12589-12608. [PMID: 37101951 PMCID: PMC10123497 DOI: 10.1039/d3ra01635h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
A new series of 6-(pyrrolidin-1-ylsulfonyl)-[1,3]dithiolo[4,5-b]quinoxaline-2-ylidines 10a-f, 12, 14, 16, and 18 were designed, synthesized, and evaluated for their in vitro anticancer activity. The structures of the novel compounds were systematically characterized by 1H NMR, 13C NMR, and elemental analysis. The synthesized derivatives were evaluated for their in vitro antiproliferative activity against three human cancer cell lines (HepG-2, HCT-116, and MCF-7) with more sensitivity to MCF-7. Moreover, three derivatives 10c, 10f, and 12 were the most promising candidates with sub-micromole values. These derivatives were further evaluated against MDA-MB-231, and the results displayed significant IC50 values ranging from 2.26 ± 0.1 to 10.46 ± 0.8 μM and showed low cellular cytotoxicity against WI-38. Surprisingly, the most active derivative 12 revealed sensitivity towards the breast cell lines MCF-7 (IC50 = 3.82 ± 0.2 μM) and MDA-MB-231 (IC50 = 2.26 ± 0.1 μM) compared with doxorubicin (IC50 = 4.17 ± 0.2 and 3.18 ± 0.1 M). Cell cycle analysis showed that compound 12 arrests and inhibits the growth of MCF-7 cells in the S phase with values of 48.16% compared with the untreated control 29.79% and exhibited a significantly higher apoptotic effect in MCF-7 with a value of 42.08% compared to control cell at 1.84%. Furthermore, compound 12 decreased Bcl-2 protein 0.368-fold and activation on pro-apoptotic genes Bax and P53 by 3.97 and 4.97 folds, respectively, in MCF-7 cells. Compound 12 exhibited higher inhibitory activity to EGFRWt, EGFRL858R, and VEGFR-2 with IC50 values (0.19 ± 0.009, 0.026 ± 0.001, and 0.42 ± 0.021 μM) compared with erlotinib (IC50 = 0.037 ± 0.002 and 0.026 ± 0.001 μM) and sorafenib (IC50 = 0.035 ± 0.002 μM). Finally, in silico ADMET prediction presented that 1,3-dithiolo[4,5-b]quinoxaline derivative 12 obeys the Lipinski rule of five and the Veber rule with no PAINs alarms and moderately soluble properties. Additionally, toxicity prediction revealed that compound 12 demonstrated inactivity to hepatotoxic carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity. Moreover, molecular docking studies showed good binding affinity with lower binding energy inside the active site of Bcl-2 (PDB: 4AQ3), EGFR (PDB: 1M17), and VEGFR (PDB: 4ASD).
Collapse
Affiliation(s)
- Mostafa A Ismail
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| | - Moustafa S Abusaif
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Mohamed S A El-Gaby
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| |
Collapse
|
16
|
Raslan RR, Ammar YA, Fouad SA, Hessein SA, Shmiess NAM, Ragab A. Evaluation of the anti-proliferative activity of 2-oxo-pyridine and 1′ H-spiro-pyridine derivatives as a new class of EGFR Wt and VEGFR-2 inhibitors with apoptotic inducers †. RSC Adv 2023; 13:10440-10458. [PMID: 37020892 PMCID: PMC10069231 DOI: 10.1039/d3ra00887h] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Developing new agents for cancer treatment remains a top priority because it is one of the deadliest worldwide. A new series of 2-oxo-pyridine and 1′H-spiro-pyridine derivatives were designed and synthesized based on an N-(ethyl benzoate) moiety. The structure of the designed derivatives was confirmed by different spectroscopic techniques (FT-IR and NMR) and elemental analysis and then evaluated as antiproliferative against HepG-2 and Caco-2 cell lines compared with Doxorubicin. The spiro-pyridine derivatives 5, 7, and 8 exhibited a remarkably higher activity against Caco-2 cell lines than that of other derivatives. Additionally, these derivatives exhibited activation in the Bax and suppressed Bcl-2 expression with variable degrees. Interestingly, compound 7 showed the lowest cytotoxicity value on Caco-2 cells (IC50 = 7.83 ± 0.50 μM) compared with Doxorubicin (IC50 = 12.49 ± 1.10 μM). Additionally, this compound showed activation of the Bax gene (7.508-fold) and suppressed Bcl-2 (0.194-fold) compared to untreated Caco-2 cells, as revealed by the qRT-PCR technique. Moreover, compound 7 could inhibit EGFR and VEGFR-2 with sub-micromole values of 0.124 μM and 0.221 μM compared with Erlotinib (IC50 = 0.033 μM) and Sorafenib (IC50 = 0.043 μM), respectively. Further, cell cycle and apoptosis analysis demonstrated that compound 7 promoted apoptosis by increasing the apoptosis rate from 1.92 to 42.35% and the S cell accumulation ratio from 31.18 to 42.07% compared to untreated Caco-2 cells. Finally, the most active compound 7 showed good drug-likeness and toxicity profiles. Besides, molecular docking studies were performed to determine the binding mode, which is in agreement with the in vitro results. Design and synthesis a novel of 2-oxo-pyridine and 1′H-spiro-pyridine derivatives as a new apoptotic inducers agents.![]()
Collapse
Affiliation(s)
- Reham R. Raslan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Yousry A. Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar UniversityNasr City11884CairoEgypt
| | - Sawsan A. Fouad
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Sadia A. Hessein
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Nadia A. M. Shmiess
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar UniversityNasr CityCairoEgypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar UniversityNasr City11884CairoEgypt
| |
Collapse
|