1
|
Lalioti N, Zygouri E, Nastopoulos V, Panagiotou N, Brites CDS, Carlos LD, Corredoira-Vázquez J, Tangoulis V. Luminescent Thermometer Based on a Praseodymium(iii) Cyanide-Based Metal-Organic Framework. Inorg Chem 2025; 64:192-201. [PMID: 39701970 PMCID: PMC11734120 DOI: 10.1021/acs.inorgchem.4c04436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Trivalent lanthanide ions have emerged as promising candidates for precise and remote temperature sensing. Among them, Pr3+-based luminescent thermometers remain underexplored, particularly those operating in the near-infrared (NIR) spectral region. This work presents the synthesis and thorough characterization of a novel Pr3+-based coordination polymer, {[Pr2IIIPt3II(CN)12(4,4'-bpyO2)4(H2O)6]·4H2O}n (1), as a rare example of Pr3+ luminescent thermometry. Coordination between Pr3+ ions, cyanido-bridged Pt2+ centers, and 4,4'-bpyO2 ligands enables efficient energy transfer, producing luminescence in visible and near-infrared regions. The polymer demonstrates distinct temperature-dependent luminescence over a wide range (12-386 K), with relative thermal sensitivities of ≅1%·K-1 and a minimum temperature uncertainty of 0.2 K.
Collapse
Affiliation(s)
- Nikolia Lalioti
- Department
of Chemistry, University of Patras, Patras 26504, Greece
| | - Eleni Zygouri
- Department
of Chemistry, University of Patras, Patras 26504, Greece
| | | | - Nikos Panagiotou
- Department
of Chemistry, University of Cyprus, Nicosia 1678, Cyprus
| | - Carlos D. S. Brites
- Phantom-g,
CICECO − Aveiro Institute of Materials, Department of Physics, University of Aveiro, Aveiro 3810-193, Portugal
| | - Luis D. Carlos
- Phantom-g,
CICECO − Aveiro Institute of Materials, Department of Physics, University of Aveiro, Aveiro 3810-193, Portugal
| | - Julio Corredoira-Vázquez
- Phantom-g,
CICECO − Aveiro Institute of Materials, Department of Physics, University of Aveiro, Aveiro 3810-193, Portugal
- Departamento
de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Institute
of Materials (iMATUS), Universidade de Santiago
de Compostela, Santiago de Compostela 15782, Spain
| | | |
Collapse
|
2
|
Maniaki D, Sickinger A, Barrios LA, Aguilà D, Roubeau O, Guyot Y, Riobé F, Maury O, Abad Galán L, Aromí G. Energy exchange between Nd 3+ and Er 3+ centers within molecular complexes. Chem Sci 2024; 15:d4sc03994g. [PMID: 39479154 PMCID: PMC11515939 DOI: 10.1039/d4sc03994g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Developing controlled and reproducible molecular assemblies incorporating lanthanide centers is a crucial step for driving forward up- and down-conversion processes. This challenge calls for the development of strategies to facilitate the efficient in situ segregation of different Ln metal ions into distinct positions within the molecule. The unique family of pure [LnLn'Ln] heterometallic coordination compounds previously developed by us represents an ideal platform for studying the desired Ln-to-Ln' energy transfer (ET). In this context, we report here the new pure one-step synthetically produced [ErNdEr] (3) complex, which allows for the first time at the molecular level to study the mechanisms behind Nd-to-Er energy transfer. To further assess the photophysical properties of this complex, the analogous [LuNdLu] (1) and [ErLaEr] (2) complexes have also been prepared and photophysically studied. Efficient sensitization via the two β-diketones employed as main ligands was probed for both Nd3+ and Er3+ ions, resulting in highly resolved emission spectra and sufficiently long excited state lifetimes, which allowed further assessment of the Ln-to-Ln' ET. This intermetallic transfer was first detected by comparing the emission spectra of iso-absorbant solutions and demonstrated by comparing the lifetime values with or without the lanthanide quencher (Er3+), as well as with a deep analysis of the excitation spectrum of the three complexes. Thus, a very unique phenomenon was discovered, consisting of a mutual Nd-to-Er and Er-to-Nd ET with no net increase of brightness by any metal; while Nd3+ transfers the energy received from the antenna to Er3+, the sensitization of the latter results in back-transfer to Nd3+ into a non-emissive, thus silent, state.
Collapse
Affiliation(s)
- Diamantoula Maniaki
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) Barcelona Spain
| | - Annika Sickinger
- Univ Lyon, ENS Lyon, CNRS, UMR 5182, Laboratoire de Chimie F69342 Lyon France
| | - Leoní A Barrios
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) Barcelona Spain
| | - David Aguilà
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) Barcelona Spain
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and Universidad de Zaragoza Plaza San Francisco s/n 50009 Zaragoza Spain
| | - Yannick Guyot
- Univ. Lyon, Institut Lumière Matière, UMR 5306 CNRS-Université Claude Bernard Lyon 1, 10 rue Ada Byron F-69622 Villeurbanne Cedex France
| | - François Riobé
- Univ Lyon, ENS Lyon, CNRS, UMR 5182, Laboratoire de Chimie F69342 Lyon France
- Univ. Bordeaux, CNRS, Bordeaux INP ICMCB UMR 5026 F-33600 Pessac France
| | - Olivier Maury
- Univ Lyon, ENS Lyon, CNRS, UMR 5182, Laboratoire de Chimie F69342 Lyon France
| | - Laura Abad Galán
- Departamento de Química Inorgánica, Fac. CC. Químicas, Universidad Complutense de Madrid Avda. Complutense s/n 28040 Madrid Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) Barcelona Spain
| |
Collapse
|
3
|
Haque S, Alexandre M, Vicente AT, Li K, Schuster CS, Yang S, Águas H, Martins R, Ferreira RAS, Mendes MJ. Photon shifting and trapping in perovskite solar cells for improved efficiency and stability. LIGHT, SCIENCE & APPLICATIONS 2024; 13:238. [PMID: 39237491 PMCID: PMC11377431 DOI: 10.1038/s41377-024-01559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Advanced light management techniques can enhance the sunlight absorption of perovskite solar cells (PSCs). When located at the front, they may act as a UV barrier, which is paramount for protecting the perovskite layer against UV-enabled degradation. Although it was recently shown that photonic structures such as Escher-like patterns could approach the theoretical Lambertian-limit of light trapping, it remains challenging to also implement UV protection properties for these diffractive structures while maintaining broadband absorption gains. Here, we propose a checkerboard (CB) tile pattern with designated UV photon conversion capability. Through a combined optical and electrical modeling approach, this photonic structure can increase photocurrent and power conversion efficiency in ultrathin PSCs by 25.9% and 28.2%, respectively. We further introduce a luminescent down-shifting encapsulant that converts the UV irradiation into Visible photons matching the solar cell absorption spectrum. To this end, experimentally obtained absorption and emission profiles of state-of-the-art down-shifting materials (i.e., lanthanide-based organic-inorganic hybrids) are used to predict potential gains from harnessing the UV energy. We demonstrate that at least 94% of the impinging UV radiation can be effectively converted into the Visible spectral range. Photonic protection from high-energy photons contributes to the market deployment of perovskite solar cell technology, and may become crucial for Space applications under AM0 illumination. By combining light trapping with luminescent downshifting layers, this work unravels a potential photonic solution to overcome UV degradation in PSCs while circumventing optical losses in ultrathin cells, thus improving both performance and stability.
Collapse
Affiliation(s)
- Sirazul Haque
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica, Caparica, Portugal.
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
- Materials Science and Engineering, School for Engineering of Matter Transport and Energy, Arizona State University, Tempe, AZ, USA.
| | - Miguel Alexandre
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica, Caparica, Portugal
| | - António T Vicente
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica, Caparica, Portugal
| | - Kezheng Li
- Department of Physics, University of York, Heslington, York, UK
| | | | - Sui Yang
- Materials Science and Engineering, School for Engineering of Matter Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Hugo Águas
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica, Caparica, Portugal
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica, Caparica, Portugal
| | - Rute A S Ferreira
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Manuel J Mendes
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica, Caparica, Portugal.
| |
Collapse
|
4
|
Wright PJ, Pfrunder MC, Etchells IM, Haghighatbin MA, Raiteri P, Ogden MI, Stagni S, Hogan CF, Cameron LJ, Moore EG, Massi M. Elucidating the Mechanism of Efficient Eu(III) and Yb(III) Sensitisation from a Re(I) Tetrazolato Triangular Assembly. Chemistry 2024; 30:e202401233. [PMID: 38825747 DOI: 10.1002/chem.202401233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
The reaction of Re(CO)5Br with deprotonated 1H-(5-(2,2':6',2''-terpyridine)pyrid-2-yl)tetrazole yields a triangular assembly formed by tricarbonyl Re(I) vertices. Photophysical measurements reveal blue-green emission with a maximum at 520 nm, 32 % quantum yield, and 2430 ns long-lived excited state decay lifetime in deaerated dichloromethane solution. Coordination of lanthanoid ions to the terpyridine units red-shifts the emission to 570 nm and also reveals efficient (90 %) and fast sensitisation of both Eu(III) and Yb(III) at room temperature, with a similar rate constant kET on the order of 107 s-1. Efficient sensitisation of Eu(III) from Re(I) is unprecedented, especially when considering the close proximity in energy between the donor and acceptor excited states. On the other hand, comparative measurements at 77 K reveal that energy transfer to Yb(III) is two orders of magnitude slower than that to Eu(III). A two-step mechanism of sensitisation is therefore proposed, whereby the rate-determining step is a thermally activated energy transfer step between the Re(I) centre and the terpyridine functionality, followed by rapid energy transfer to the respective Ln(III) excited states. At 77 K, the direct Re(I) to Eu(III) energy transfer seems to proceed via a ligand-mediated superexchange Dexter-type mechanism.
Collapse
Affiliation(s)
- Phillip J Wright
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6102, Australia
| | - Michael C Pfrunder
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Isaac M Etchells
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Paolo Raiteri
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6102, Australia
| | - Mark I Ogden
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6102, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Bologna, 40136, Italy
| | - Conor F Hogan
- Department of Chemistry and Physics, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Lee J Cameron
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6102, Australia
| | - Evan G Moore
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Perth, WA, 6102, Australia
| |
Collapse
|
5
|
Zabiszak M, Frymark J, Grajewski J, Jastrzab R. Spectroscopic Studies of Lanthanide(III) Complexes with L-Malic Acid in Binary Systems. Int J Mol Sci 2024; 25:9210. [PMID: 39273158 PMCID: PMC11395662 DOI: 10.3390/ijms25179210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Binary systems of lanthanide ions (La, Nd, Gd, Ho, Tb, and Lu) with L-malic acid in molar ratios of 1:1 and 1:2 were studied. This study was carried out in aqueous solutions, and the composition of the formed complexes was confirmed using computer data analysis. The overall stability constants of the complexes and the equilibrium constants of the reaction were determined. The effect of ligand concentration on the composition of the internal coordination sphere of the central atom was observed. Changes in the coordination sphere of lanthanide ions were confirmed by spectroscopic measurements.
Collapse
Affiliation(s)
- Michał Zabiszak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Justyna Frymark
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Jakub Grajewski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| | - Renata Jastrzab
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland
| |
Collapse
|
6
|
Oliva G, Vigliotta G, Di Stasio L, Vasca E, Castiglione S. Development of Broad-Range Microbial Minimal Culture Medium for Lanthanide Studies. Microorganisms 2024; 12:1531. [PMID: 39203373 PMCID: PMC11356471 DOI: 10.3390/microorganisms12081531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
Rare Earth Elements (REE), also known as Lanthanides (Ln3+), are a group of 17 elements showing peculiar physical and chemical properties. Unlike technological applications, very little is known about the physiological role and toxicity of Ln3+ on biological systems, in particular on microorganisms (e.g., bacteria), which represent the most abundant domains on our planet. Up to now, very limited studies have been conducted due to Ln3+ precipitation with some anions commonly present in the culture media. Therefore, the development of a minimal medium is essential to allow the study of Ln3+-microbial interactions, limiting considerably the precipitation of insoluble salts. In this regard, a new minimal culture medium capable of solubilizing large amounts of Ln3+ and allowing the growth of different microbial taxa was successfully developed. Assays have shown that the medium is capable of solubilizing Ln3+ up to 100 times more than other common culture media and allowing the growth of 63 bacteria and 5 fungi. The kinetic growth of one yeast and one Gram-positive bacterium has been defined, proving to support superior growth and biomass compared to other commonly used minimal media. Moreover, the sensitivity and uptake/absorption of a Bacillus stratosphericus strain were tested, highlighting its capability to tolerate concentrations up to 10 mM of either Cerium, Gadolinium or Lanthanum and accumulate different quantities of the three.
Collapse
Affiliation(s)
| | - Giovanni Vigliotta
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, SA, Italy; (G.O.); (L.D.S.); (E.V.); (S.C.)
| | | | | | | |
Collapse
|
7
|
Freire RVM, Coelho DMA, Maciel LG, Jesus LT, Freire RO, Dos Anjos JV, Junior SA. Luminescent Supramolecular Metallogels: Drug Loading and Eu(III) as Structural Probe. Chemistry 2024; 30:e202400680. [PMID: 38593232 DOI: 10.1002/chem.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Supramolecular metallogels combine the rheological properties of gels with the color, magnetism, and other properties of metal ions. Lanthanide ions such as Eu(III) can be valuable components of metallogels due to their fascinating luminescence. In this work, we combine Eu(III) and iminodiacetic acid (IDA) into luminescent hydrogels. We investigate the tailoring of the rheological properties of these gels by changes in their metal:ligand ratio. Further, we use the highly sensitive Eu(III) luminescence to obtain information about the chemical structure of the materials. In special, we take advantage of computational calculations to employ an indirect method for structural elucidation, in which the simulated luminescent properties of candidate structures are matched to the experimental data. With this strategy, we can propose molecular structures for different EuIDA gels. We also explore the usage of these gels for the loading of bioactive molecules such as OXA, observing that its aldose reductase activity remains present in the gel. We envision that the findings from this work could inspire the development of luminescent hydrogels with tunable rheology for applications such as 3D printing and imaging-guided drug delivery platforms. Finally, Eu(III) emission-based structural elucidation could be a powerful tool in the characterization of advanced materials.
Collapse
Affiliation(s)
- Rafael V M Freire
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, 50740-560, Recife, Brazil
| | - Dhiego M A Coelho
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, 50740-560, Recife, Brazil
| | - Larissa G Maciel
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, 50740-560, Recife, Brazil
| | - Larissa T Jesus
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, 50740-560, Recife, Brazil
- Pople Computational Chemistry Laboratory, Department of Chemistry, Federal University of Sergipe, 49107-230, São Cristóvão, SE, Brazil
| | - Ricardo O Freire
- Pople Computational Chemistry Laboratory, Department of Chemistry, Federal University of Sergipe, 49107-230, São Cristóvão, SE, Brazil
| | - Janaína V Dos Anjos
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, 50740-560, Recife, Brazil
| | - Severino A Junior
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária, 50740-560, Recife, Brazil
| |
Collapse
|
8
|
Fiedler S, Frenzel F, Würth C, Tavernaro I, Grüne M, Schweizer S, Engel A, Resch-Genger U. Interlaboratory Comparison on Absolute Photoluminescence Quantum Yield Measurements of Solid Light Converting Phosphors with Three Commercial Integrating Sphere Setups. Anal Chem 2024; 96:6730-6737. [PMID: 38629445 PMCID: PMC11063975 DOI: 10.1021/acs.analchem.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Scattering luminescent materials dispersed in liquid and solid matrices and luminescent powders are increasingly relevant for fundamental research and industry. Examples are luminescent nano- and microparticles and phosphors of different compositions in various matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter to characterize the performance of these materials is the photoluminescence/fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. To identify and quantify the sources of uncertainty of absolute measurements of Φf of scattering samples, the first interlaboratory comparison (ILC) of three laboratories from academia and industry was performed by following identical measurement protocols. Thereby, two types of commercial stand-alone integrating sphere setups with different illumination and detection geometries were utilized for measuring the Φf of transparent and scattering dye solutions and solid phosphors, namely, YAG:Ce optoceramics of varying surface roughness, used as converter materials for blue light emitting diodes. Special emphasis was dedicated to the influence of the measurement geometry, the optical properties of the blank utilized to determine the number of photons of the incident excitation light absorbed by the sample, and the sample-specific surface roughness. While the Φf values of the liquid samples matched between instruments, Φf measurements of the optoceramics with different blanks revealed substantial differences. The ILC results underline the importance of the measurement geometry, sample position, and blank for reliable Φf data of scattering the YAG:Ce optoceramics, with the blank's optical properties accounting for uncertainties exceeding 20%.
Collapse
Affiliation(s)
- Saskia Fiedler
- Division
of Biophotonics, Federal Institute for Materials Research and Testing
(BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
| | - Florian Frenzel
- Division
of Biophotonics, Federal Institute for Materials Research and Testing
(BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
| | - Christian Würth
- Division
of Biophotonics, Federal Institute for Materials Research and Testing
(BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
| | - Isabella Tavernaro
- Division
of Biophotonics, Federal Institute for Materials Research and Testing
(BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
| | - Michelle Grüne
- Faculty
of Electrical Engineering, South Westphalia
University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany
| | - Stefan Schweizer
- Faculty
of Electrical Engineering, South Westphalia
University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany
- Fraunhofer
Application Center for Inorganic Phosphors, Branch Lab of Fraunhofer Institute for Microstructure of Materials
and Systems IMWS, Lübecker
Ring 2, 59494 Soest, Germany
| | - Axel Engel
- Schott
AG Technical Services, Hattenbergstrasse 10, D-55122 Mainz, Germany
| | - Ute Resch-Genger
- Division
of Biophotonics, Federal Institute for Materials Research and Testing
(BAM), Richard-Willstaetter-Strasse 11, D-12489 Berlin, Germany
| |
Collapse
|
9
|
Bietar K, Chu S, Mandl G, Zhang E, Chabaytah N, Sabelli R, Capobianco JA, Stochaj U. Silica-coated LiYF 4:Yb 3+, Tm 3+ upconverting nanoparticles are non-toxic and activate minor stress responses in mammalian cells. RSC Adv 2024; 14:8695-8708. [PMID: 38495986 PMCID: PMC10938293 DOI: 10.1039/d3ra08869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Lanthanide-doped upconverting nanoparticles (UCNPs) are ideal candidates for use in biomedicine. The interaction of nanomaterials with biological systems determines whether they are suitable for use in living cells. In-depth knowledge of the nano-bio interactions is therefore a pre-requisite for the development of biomedical applications. The current study evaluates fundamental aspects of the NP-cell interface for square bipyramidal UCNPs containing a LiYF4:Yb3+, Tm3+ core and two different silica surface coatings. Given their importance for mammalian physiology, fibroblast and renal proximal tubule epithelial cells were selected as cellular model systems. We have assessed the toxicity of the UCNPs and measured their impact on the homeostasis of living non-malignant cells. Rigorous analyses were conducted to identify possible toxic and sub-lethal effects of the UCNPs. To this end, we examined biomarkers that reveal if UCNPs induce cell killing or stress. Quantitative measurements demonstrate that short-term exposure to the UCNPs had no profound effects on cell viability, cell size or morphology. Indicators of oxidative, endoplasmic reticulum, or nucleolar stress, and the production of molecular chaperones varied with the surface modification of the UCNPs and the cell type analyzed. These differences emphasize the importance of evaluating cells of diverse origin that are relevant to the intended use of the nanomaterials. Taken together, we established that short-term, our square bipyramidal UCNPs are not toxic to non-malignant fibroblast and proximal renal epithelial cells. Compared with established inducers of cellular stress, these UCNPs have minor effects on cellular homeostasis. Our results build the foundation to explore square bipyramidal UCNPs for future in vivo applications.
Collapse
Affiliation(s)
- Kais Bietar
- Department of Physiology, McGill University Canada
| | - Siwei Chu
- Department of Physiology, McGill University Canada
| | - Gabrielle Mandl
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Emma Zhang
- Department of Physiology, McGill University Canada
| | | | | | - John A Capobianco
- Department of Chemistry and Biochemistry, Centre for Nanoscience Research, Concordia University Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University Canada
- Quantitative Life Sciences Program, McGill University Montreal Canada
| |
Collapse
|
10
|
Behrsing T, Blair VL, Jaroschik F, Deacon GB, Junk PC. Rare Earths-The Answer to Everything. Molecules 2024; 29:688. [PMID: 38338432 PMCID: PMC10856286 DOI: 10.3390/molecules29030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Rare earths, scandium, yttrium, and the fifteen lanthanoids from lanthanum to lutetium, are classified as critical metals because of their ubiquity in daily life. They are present in magnets in cars, especially electric cars; green electricity generating systems and computers; in steel manufacturing; in glass and light emission materials especially for safety lighting and lasers; in exhaust emission catalysts and supports; catalysts in artificial rubber production; in agriculture and animal husbandry; in health and especially cancer diagnosis and treatment; and in a variety of materials and electronic products essential to modern living. They have the potential to replace toxic chromates for corrosion inhibition, in magnetic refrigeration, a variety of new materials, and their role in agriculture may expand. This review examines their role in sustainability, the environment, recycling, corrosion inhibition, crop production, animal feedstocks, catalysis, health, and materials, as well as considering future uses.
Collapse
Affiliation(s)
- Thomas Behrsing
- School of Chemistry, Monash University, Melbourne, VIC 3800, Australia; (T.B.); (V.L.B.); (G.B.D.)
| | - Victoria L. Blair
- School of Chemistry, Monash University, Melbourne, VIC 3800, Australia; (T.B.); (V.L.B.); (G.B.D.)
| | | | - Glen B. Deacon
- School of Chemistry, Monash University, Melbourne, VIC 3800, Australia; (T.B.); (V.L.B.); (G.B.D.)
| | - Peter C. Junk
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
11
|
Degtyareva SS, Bardonov DA, Afanaseva AV, Puntus LN, Lyssenko KA, Birin KP, Minyaev ME, Burykina JV, Taydakov IV, Varaksina EA, Nifant'ev IE, Roitershtein DM. Tridentate Nitrogen Ligand as a Tool for the Construction of Well-Defined Rare Earth Trichloride Complexes. Inorg Chem 2024; 63:1867-1878. [PMID: 38237143 DOI: 10.1021/acs.inorgchem.3c03492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
LnCl3(THF)3 (Ln = Y, La ÷ Nd, Sm ÷ Lu) readily react with the tridentate 1,3,5-trimethyl-1,3,5-triazacyclohexane (Me3tach) ligand to form mono- or binuclear lanthanide trichloride complexes, depending on the stoichiometry of the reaction and the ionic radius of the metal: mononuclear pseudosandwich [LnCl3(Me3tach)2], (Ln = Y, La ÷ Ho) or binuclear complexes [Ln2Cl6(Me3tach)3], or [LnCl3(Me3tach)(THF)]2 (Ln = Sm, Tb). Detailed analysis of the NMR data of [LnCl3(Me3tach)2] complexes with paramagnetic lanthanide ions showed that their structures remained unchanged in the toluene solution. A series of isomorphous complexes [LnCl3(Me3tach)(Py)2] (Ln = La, Sm, Tb, Er, Lu; Py = pyridine) have been obtained by the recrystallization of either mononuclear or binuclear complexes from pyridine. Complexes of terbium and europium ions with the Me3tach ligand exhibit relatively high quantum yields of metal-centered luminescence (0.39 and 0.32, respectively).
Collapse
Affiliation(s)
- Svetlana S Degtyareva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
- National Research University Higher School of Economics (HSE University), 101000 Moscow, Russian Federation
| | - Daniil A Bardonov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
- National Research University Higher School of Economics (HSE University), 101000 Moscow, Russian Federation
| | - Anna V Afanaseva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
- National Research University Higher School of Economics (HSE University), 101000 Moscow, Russian Federation
| | - Lada N Puntus
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
- V.A. Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Fryazino, 141190 Moscow, Russian Federation
| | - Konstantin A Lyssenko
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Kirill P Birin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Mikhail E Minyaev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Julia V Burykina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Ilya V Taydakov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Evgenia A Varaksina
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
- P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Ilya E Nifant'ev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Dmitrii M Roitershtein
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russian Federation
- National Research University Higher School of Economics (HSE University), 101000 Moscow, Russian Federation
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| |
Collapse
|
12
|
Malcomson T, Edwards-Yates L, Kerridge A. Tailoring the pore size of expanded porphyrinoids for lanthanide selectivity. RSC Adv 2023; 13:28426-28433. [PMID: 37771918 PMCID: PMC10523133 DOI: 10.1039/d3ra05710k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Despite increase in demand, capacity for the recycling of rare earth elements remains limited, partly due to the inefficiencies with processes currently utilised in the separation of lanthanides. This study highlights the potential use of expanded porphyrinoids in lanthanide separation through selective binding, dependent on the tailored pore size of the macrocycle. Each emerging trend is subjected to multi-factored analysis to decompose the underlying source. Results promote the viability of size-based separation with preferential binding of larger lanthanum(iii) ions to amethyrin and isoamethyrin macrocycles, while smaller macrocycles such as pentaphyrin(0.0.0.0.0) present a preferential binding of lutetium(iii) ions. Additionally, the porphyrin(2.2.2.2) macrocycle shows a selectivity for gadolinium(iii) ions over both larger and smaller ions. An upper limit of applicable pore size is shown to be ≈2.8 Å, beyond which the formed complexes are predicted to be less stable than the corresponding nitrate complexes.
Collapse
Affiliation(s)
- Thomas Malcomson
- Department of Chemistry, School of Natural Sciences, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | | |
Collapse
|