1
|
Thakur A, Kumar A, Dagdag O, Kim H, Berisha A, Sharma D, Om H. Unraveling the corrosion inhibition behavior of prinivil drug on mild steel in 1M HCl corrosive solution: insights from density functional theory, molecular dynamics, and experimental approaches. Front Chem 2024; 12:1403118. [PMID: 38947959 PMCID: PMC11212477 DOI: 10.3389/fchem.2024.1403118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024] Open
Abstract
The deterioration of mild steel in an acidic environment poses a significant challenge in various industries. The emergence of effective corrosion inhibitors has drawn attention to studies aimed at reducing the harmful consequences of corrosion. In this study, the corrosion inhibition efficiency of Prinivil in a 1M HCl solution through various electrochemical and gravimetric techniques has been investigated for the first time. The results demonstrated that the inhibition efficiency of Prinivil expanded from 61.37% at 50 ppm to 97.35% at 500 ppm concentration at 298 K. With a regression coefficient (R 2) of 0.987, Kads value of 0.935 and Ea value of 43.024 kJ/mol at 500 ppm concentration of inhibitor, a strong affinity of Prinivil for adsorption onto the metal surface has been significantly found. Scanning electron microscopy (SEM) and contact angle measurement analyses further support the inhibitory behavior of Prinivil, demonstrating the production of a defensive layer on the surface of mild steel. Additionally, molecular dynamics (MD) and Monte Carlo simulations were employed to investigate the stability and interactions between Prinivil and the metallic surface (Fe (1 1 0)) at the atomic level. The computed results reveal strong adsorption of Prinivil upon the steel surface, confirming its viability as a corrosion inhibitor.
Collapse
Affiliation(s)
- Abhinay Thakur
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
| | - Ashish Kumar
- Nalanda College of Engineering, Department of Science, Technology and Technical Education, Government of Bihar, Bihar Engineering University, Nalanda, India
| | - Omar Dagdag
- Department of Mechanical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Hansang Kim
- Department of Mechanical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Avni Berisha
- Department of Chemistry, Faculty of Natural and Mathematics Science, University of Prishtina, Prishtina, Albania
| | - Deepak Sharma
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| | - Hari Om
- Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Haryana, India
| |
Collapse
|
2
|
Abuelela AM, Bedair MA, Gad ES, El-Aryan YF, Arafa WAA, Mourad AK, Nady H, Eid S. Exploring the synthesis, characterization, and corrosion inhibition of new tris-thiosemicarbazone derivatives for acidic steel settings using computational and experimental studies. Sci Rep 2024; 14:13310. [PMID: 38858460 PMCID: PMC11164706 DOI: 10.1038/s41598-024-64199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
A novel two tri-thiosemicarbazones derivatives, namely 2,2',2''-((2-Hydroxybenzene-1,3,5-triyl)tris(methanylylidene))tris(N-benzylhydrazine-1-carbothioamide) (HBC) and 2,2',2''-((2-hydroxybenzene-1,3,5-triyl) tris (methanylylidene)) tris (N-allylhydrazine-1-carbothioamide) (HAC), have been synthesized and their chemical structures were determined using different spectroscopic and analytical approaches. Then, utilizing methods including open circuit potential, potentiodynamic polarization, and electrochemical impedance spectroscopy, the inhibitory effect of the synthesized thiosemicarbazones on mild steel (MS) in an acidic environment (0.5 M H2SO4) was thoroughly investigated. Remarkably, raising the concentration of our recently synthesized tri-thiosemicarbazones HBC and HAC increased the inhibitory efficiency values. The η values of the two investigated tri-thiosemicarbazones derivatives (HAC and HBC), at each concentration are extremely high, and the maximum values of the efficiencies are 98.5% with HAC and 98.8% with HBC at the 800 ppm. The inhibitors adsorbed on the mild steel surface and generated a charge and mass movement barrier that protected the metal from hostile ions. According to polarization curves, HBC and HAC act as mixed-type inhibitors. Electrochemical impedance testing revealed a notable rise in charge transfer resistance (Rct) readings to 4930-Ω cm2, alongside a reduction in the Constant Phase Element (CPE) value to 5.81 μF, suggesting increased effectiveness in preventing corrosion. Also, density functional theory (DFT) was applied to investigate the assembled tri-thiosemicarbazones HBC and HAC. Moreover, the adsorption mechanism of HBC and HAC on the mild steel surface was explored using Monte Carlo simulation. Finally, the theoretical outputs were discovered to support the practical outcomes.
Collapse
Affiliation(s)
- Ahmed M Abuelela
- Department of Chemistry, College of Science, King Faisal University, 31982, Al-Hassa, Saudi Arabia.
| | - Mahmoud A Bedair
- Department of Chemistry, College of Science, University of Bisha, P.O. Box 511, 61922, Bisha, Saudi Arabia.
| | - Ehab S Gad
- Chemistry Department, College of Science, Jouf University, P. O. Box 2014, Sakaka, Jouf, Saudi Arabia.
| | - Y F El-Aryan
- Department of Chemistry, College of Science, University of Bisha, P.O. Box 511, 61922, Bisha, Saudi Arabia
| | - Wael Abdelgayed Ahmed Arafa
- Chemistry Department, College of Science, Jouf University, P. O. Box 2014, Sakaka, Jouf, Saudi Arabia
- Chemistry Department, Faculty of Science, Fayoum University, P. O. Box 63514, Fayoum, Egypt
| | - Asmaa K Mourad
- Chemistry Department, Faculty of Science, Fayoum University, P. O. Box 63514, Fayoum, Egypt
| | - H Nady
- Chemistry Department, College of Science, Jouf University, P. O. Box 2014, Sakaka, Jouf, Saudi Arabia
- Chemistry Department, Faculty of Science, Fayoum University, P. O. Box 63514, Fayoum, Egypt
| | - Salah Eid
- Chemistry Department, College of Science, Jouf University, P. O. Box 2014, Sakaka, Jouf, Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
| |
Collapse
|
3
|
Yousif QA, Abdel Nazeer A, Fadel Z, Al-Hajji LA, Shalabi K. Design of New Ecofriendly Schiff Base Inhibitors for Carbon Steel Corrosion Protection in Acidic Solutions: Electrochemical, Surface, and Theoretical Studies. ACS OMEGA 2024; 9:14153-14173. [PMID: 38559995 PMCID: PMC10976376 DOI: 10.1021/acsomega.3c09688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Corrosion poses a significant problem for several industrial sectors, inducing continuous research and development of corrosion inhibitors for use across a wide range of industrial applications. Here, we report the effectiveness of three newly developed Schiff bases derived from amino acids and 4-aminoacetophenone, namely, AIP, AMB, and AImP, as environmentally friendly corrosion inhibitors for Q235 steel in hydrochloric acid using electrochemical and surface analyses, in addition to theoretical techniques. The electrochemical findings of potentiodynamic polarization (PDP) demonstrated that the explored compounds serve as mixed-type inhibitors and can effectively suppress steel corrosion, with maximal protection efficiencies of 93.15, 96.01, and 77.03% in the presence of AIP, AMB, and AImP, respectively, at a concentration of 10 mM. The electrochemical impedance spectroscopy (EIS) and polarization results confirmed the growth of a durable protective barrier on the steel surface in the existence of the inhibitors, which is responsible for decreasing the metallic dissolution. Results were further supported by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis, and Fourier transform infrared (FTIR), which ascribed the development of inhibitor-adsorption films on the steel surface. The results of EDS and XPS analyses demonstrated the existence of the distinctive elements of the inhibitors on the metallic surface. Furthermore, density functional theory (DFT) calculations and Monte Carlo (MC) simulations showed the electronic structure of the examined inhibitors and their optimized adsorption configurations on the steel surface, which helped in explaining the anticorrosion mechanism. Finally, the theoretical and experimental findings exhibit a high degree of consistency.
Collapse
Affiliation(s)
- Qahtan A. Yousif
- Department
of Materials Engineering, College of Engineering, University of Al-Qadisiyah, Al Diwaniyah 111111, Iraq
| | - Ahmed Abdel Nazeer
- Nanotechnology
and Advanced Materials Program, Energy & Building Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat 13109, Kuwait
- Electrochemistry
Laboratory, Physical Chemistry Department, National Research Center, Giza 12622, Egypt
| | - Zainb Fadel
- General
Directorate of Education Al-Qadisiyah, Ministry of Education, Al-Qadisiyah 001, Iraq
| | - Latifa A. Al-Hajji
- Nanotechnology
and Advanced Materials Program, Energy & Building Research Center, Kuwait Institute for Scientific Research (KISR), P.O. Box 24885, Safat 13109, Kuwait
| | - Kamal Shalabi
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Chemistry
Department, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
4
|
Kunjumol VS, Jeyavijayan S, Sumathi S, Karthik N. Spectroscopic, computational, cytotoxicity, and docking studies of 6-bromobenzimidazole as anti-breast cancer agent. J Mol Recognit 2024; 37:e3074. [PMID: 38168749 DOI: 10.1002/jmr.3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
6-Bromobenzimidazole (6BBZ) has been calculated in this study utilizing the 6-311++G(d,p) basis set and the Becke-3-Lee-Yang-Parr density functional approaches. The basic frequencies and geometric optimization are known. FTIR, FT-Raman, and UV-Vis spectra of the substance are compared between its computed and observed values. The energy gap between highest occupied molecular orbital-lowest unoccupied molecular orbital and molecule electrostatic potentials has been represented by charge density distributions that may be associated with the biological response. Time-dependent density functional theory calculations in the gas phase and dimethyl sulfoxide were carried out to ascertain the electronic properties and energy gap values using the same basis set. Molecular orbital contributions are investigated using the overlap population, partial, and total densities of states. Natural bond analysis was found to have strong electron delocalization by means of π(C4-C9) → π*(C5-C6), LP (N1) → π*(C7-C8), and LP(Br12) → π*(C5-C6) interactions. The Fukui function and Mulliken analysis have been explored on the atomic charges of the molecule. The nuclear magnetic resonance chemical shifts for 1 H and 13 C have been computed using the gauge-independent atomic orbital technique. With the highest binding affinity (-6.2 kcal mol-1 ) against estrogen sulfotransferase receptor (PDB ID: 1AQU) and low IC50 value of 17.23 μg/mL, 6BBZ demonstrated potent action against the MCF-7 breast cancer cell line. Studies on the antibacterial activity and ADMET prediction of the molecule have also been carried out.
Collapse
Affiliation(s)
- V S Kunjumol
- Department of Engineering, University of Technology and Applied Science, Shinas, Oman
| | - S Jeyavijayan
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - S Sumathi
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - N Karthik
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| |
Collapse
|
5
|
Tian JJ, Chen YX, Liu ZX, Liu JK. Synthesis and Mechanism of Co 2+/Sr 2+ Codoped Magnetic Lanthanum Cuprate with Excellent Corrosion Resistance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53651-53664. [PMID: 37944056 DOI: 10.1021/acsami.3c09858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The special structure of perovskite-like compounds allows the existence of some open spaces in the crystals that play an important role in their crystal function enhancement and can accommodate active oxygen, which helps to solve some problems in the field of corrosion prevention. The magnetic lanthanum cuprate was obtained through the doping of Co2+ and Sr2+, and compared with La2CuO4 and epoxy resin, its corrosion resistance was improved by 215.2 and 566.7%, respectively. The micromagnetic field in the crystal interfered with the state of motion of the electrons and prolonged their transport path. High concentration doping and substitution of unequal states led to the formation of oxygen vacancy defects, which could trap active oxygen molecules and inhibit cathodic corrosion reactions. The unique alternating interlayer structure of perovskite-like compounds was conducive to the release of Cu2+, thus forming a more stable passivator on the surface of the coating. La1.96Sr0.04Cu0.98Co0.02O4 had both magnetic properties and structural advantages, which enhanced the shielding property of epoxy resin and expanded the application of perovskite-like compounds in the field of corrosion prevention.
Collapse
Affiliation(s)
- Jing-Jing Tian
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi-Xiang Chen
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zi-Xiang Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jin-Ku Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan Province 643000, P. R. China
| |
Collapse
|
6
|
Abuelela AM, Kaur J, Saxena A, Bedair MA, Verma DK, Berdimurodov E. Electrochemical and DFT studies of Terminalia bellerica fruit extract as an eco-friendly inhibitor for the corrosion of steel. Sci Rep 2023; 13:19367. [PMID: 37938591 PMCID: PMC10632492 DOI: 10.1038/s41598-023-45283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/18/2023] [Indexed: 11/09/2023] Open
Abstract
It is well known that metal corrosion causes serious economy losses worldwide. One of the most effective ways to prevent corrosion is the continuous development of high-efficient and environment-friendly corrosion inhibitors. Among the widely used organic and inorganic corrosion inhibitors, plant extracts are top candidates due to their nontoxic nature. The present study reports a novel application of the methanolic extract of Terminalia bellerica fruits as an environment friendly corrosion inhibitor for steel in sulphuric acid medium. The phytochemicals of the extract, namely Ellagic, Gallic, and Malic acids, play a key role of the anti-corrosive behavior of the extract. The corrosion prevention activity was studied on the steel in 1 M H2SO4 using a variety of approaches including weight loss analysis (WL), scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), density functional theory (DFT), natural bond orbital analysis (NBO), Fukui function and Monte Carlo simulations (MC). In 1 M H2SO4 solution, the maximum electrochemical inhibition efficiency of 91.79% was observed at 4000 mg/L concentration of the extract. The NBO analysis showed that the charge density of the double bonds and the oxygen atoms of carbonyl and hydroxyl groups of the phytochemicals lies on the top of the natural bond orbitals which promotes the anticorrosive properties of the investigated inhibitors. The surface coverage of steel was validated by SEM measurements. According to DFT studies, numerous nucleophilic regions were present in the active phytochemical constituents of the inhibitor, demonstrating their favorable nucleophilicity. The computed electronic structure of the phytochemicals revealed band gaps of 4.813, 5.444, and 7.562 eV for Ellagic, Gallic, and Malic acids respectively suggesting effective metal-inhibitor interactions. A good correlation between experimental and theoretical findings was addressed.
Collapse
Affiliation(s)
- Ahmed M Abuelela
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| | - Jasdeep Kaur
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Akhil Saxena
- Department of Chemistry, Chandigarh University, Mohali, India.
| | - Mahmoud A Bedair
- Department of Chemistry, College of Science, University of Bisha, P.O. Box 511, 61922, Bisha, Saudi Arabia.
| | - Dakeshwar Kumar Verma
- Department of Chemistry, Government Digvijay Autonomous Postgraduate College, Rajnandgaon, Chhattisgarh, 491441, India
| | - Elyor Berdimurodov
- Chemical & Materials Engineering, New Uzbekistan University, 100007, Tashkent, Uzbekistan
- Medical School, Central Asian University, 111221, Tashkent, Uzbekistan
| |
Collapse
|
7
|
Wang J, An L, Wang J, Gu J, Sun J, Wang X. Frontiers and advances in N-heterocycle compounds as corrosion inhibitors in acid medium: Recent advances. Adv Colloid Interface Sci 2023; 321:103031. [PMID: 37907032 DOI: 10.1016/j.cis.2023.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
The acid solution is widely used in chemical cleaning, oil well acidifying, and other fields, which also brings the problem of metal corrosion that cannot be underestimated. However, adding an inhibitor is one of the most convenient and effective ways to slow down metal corrosion. N-heterocyclic compounds with high stability and durability, in line with the strategy of sustainable development, have been widely studied in an acidic environment. Imidazole, pyridine, and quinoline compounds, as the most commonly used corrosion inhibitors, can form a compact protective film via π electron cloud shifting towards the N atoms to generate coordination function. In particular, flexible modifiability makes N-heterocyclic compounds adapt to different corrosion environments readily, conducive to the formation of chemical bonds between compounds with metal surfaces to be better adsorption, so as to avoid the blemish of traditional inhibitors (such as inorganic salt and organic amines inhibitors) due to excessive usage, surface roughness of metal or environmental factor (for instance, temperature, pH and metallic) causing loose bonding between film and metal surface. More importantly, the efficient corrosion inhibition and toxicity of N-heterocyclic compounds have close to do with their own functional groups. Combined with the latest research achievement, the effects of different substituents on the corrosion inhibition and corrosion inhibition mechanisms were systematically reviewed in the acid-corrosive solution of imidazole, pyridine, and quinoline and their derivatives in this review article, respectively. In addition, the application and function of density functional theory in predicting the corrosion inhibition effect of corrosion inhibitors are also discussed. The future development trend was prospected according to the summarized research results.
Collapse
Affiliation(s)
- Jia Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jian Sun
- Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Kim CH, Ryu C, Ro YH, O SI, Yu CJ. First-principles study of mercaptoundecanoic acid molecule adsorption and gas molecule penetration onto silver surface: an insight for corrosion protection. RSC Adv 2023; 13:31224-31233. [PMID: 37886019 PMCID: PMC10598515 DOI: 10.1039/d3ra06040c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Recently, 11-mercaptoundecanoic acid (MUA) molecule has attracted attention as a promising passivation agent of Ag nanowire (NW) network electrode for corrosion inhibition, but the underneath mechanism has not been elaborated. In this work, we investigate adsorption of MUA molecule on Ag(1 0 0) and Ag(1 1 1) surface, adsorption of air gas molecules of H2O, H2S and O2 on MUA molecular end surface, and their penetrations into the Ag surface using the first-principles calculations. Our calculations reveal that the MUA molecule is strongly bound to the Ag surface with the binding energies ranging from -0.47 to -2.06 eV and the Ag-S bond lengths of 2.68-2.97 Å by Lewis acid-base reaction. Furthermore, we find attractive interactions between the gas molecules and the MUA@Ag complexes upon their adsorptions and calculate activation barriers for their migrations from the outermost end of the complexes to the top of Ag surface. It is found that the penetrations of H2O and H2S are more difficult than the O2 penetration due to their higher activation barriers, while the O2 penetration is still difficult, confirming the corrosion protection of Ag NW network by adsorbing the uniform monolayer of MUA. With these findings, this work can contribute to finding a better passivation agent in the strategy of corrosion protection of Ag NW network electrode.
Collapse
Affiliation(s)
- Chung-Hyok Kim
- Institute of Electronic Materials, High-Tech and Development Centre, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| | - Chol Ryu
- Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| | - Yong-Hak Ro
- Institute of Electronic Materials, High-Tech and Development Centre, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| | - Song-Il O
- Physics Department, O Jung Hub Chongjin University of Education Chongjin Hamgyong North Province Democratic People's Republic of Korea
| | - Chol-Jun Yu
- Computational Materials Design (CMD), Faculty of Materials Science, Kim Il Sung University PO Box 76 Pyongyang Democratic People's Republic of Korea
| |
Collapse
|
9
|
Gad ES, Abbas MA, Bedair MA, El-Azabawy OE, Mukhtar SM. Synthesis and applications of novel Schiff base derivatives as corrosion inhibitors and additives for improvement of reinforced concrete. Sci Rep 2023; 13:15091. [PMID: 37699943 PMCID: PMC10497592 DOI: 10.1038/s41598-023-41165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
The studied Schiff-base compounds in this work are multitasked investigated as corrosion inhibitors and also, to improve the physical and mechanical properties of reinforced concrete. The efficiency inhibition of the two novel Schiff-base compounds named (DHSiMF) and (DHSiB) for corrosion of carbon-steel in aqueous media of 1 M HCl was assessed via electrochemical methods and loss in weight. FT-IR, 1H-NMR spectra and elemental analysis were used to confirm the structure of such compounds. It was found to have successful inhibition even at low concentrations in tested media, as an increase in inhibitor concentration led to an improvement in the inhibition efficiency. The weight loss results clearly demonstrate that DHSiMF of C-steel in 1 M HCl has a higher inhibition efficiency than DHSiB, with a maximum inhibition efficiency (85%) attained at 1 × 10-2 M from DHSiMF. Electrochemical experiments likewise revealed the same order, but with a maximal inhibitory efficiency of 98.1%. The addition of inhibitors to the corrosive media dramatically changed the anodic Tafel constants (βa) and cathodic Tafel constants (βc), indicating a mixed type nature. Electrochemical polarization curves illustrated the functions of mixed-type inhibition and the action of adsorption matching with the Langmuir adsorption isotherm. The ∆Gads values for DHSiMF and DHSiB at temperatures (ranging from 303 to 333 K) are - 34.42 kilojoule/mole to - 37.51 kilojoule/mole. These values indicate that the compounds' adsorption types are chemo-physical adsorption. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) experiments were used to check the existence of the protection layer on the surface of carbon steel by analyzing the morphologies of the corrosion effects and the formed chemical compositions of the corrosion outcomes. For the concrete, the findings suggest that the chemical reaction that takes place between the DHSiMF and DHSiB and the concrete mix will result in an increase in the flexural strength, the compressive strength, and the indirect tensile strength of the concrete that is made of the gravel and dolomite aggregate.
Collapse
Affiliation(s)
- Ehab S Gad
- Chemistry Department, College of Science and Arts, Jouf University, Alqurayat, Saudi Arabia
| | - Mohamed A Abbas
- Egyptian Petroleum Research Institute (EPRI), Cairo, 11727, Egypt.
| | - Mahmoud A Bedair
- Department of Chemistry College of Science and Arts, University of Bisha, P.O. Box 101, 61977, Al-Namas, Saudi Arabia
| | | | - Shymaa M Mukhtar
- Civil Engineering Department, Higher Technological Institute, 10th of Ramadan City, Sharqeya, Egypt
| |
Collapse
|