1
|
El-Dossoki FI, Migahed MA, Gouda MM, El-Maksoud SAA. Synergistic enhancing of micellization and thermodynamic properties of some Gemini cationic surfactants related to benzo[d]thiazol-3-ium bromide. BMC Chem 2024; 18:240. [PMID: 39663540 PMCID: PMC11636038 DOI: 10.1186/s13065-024-01334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024] Open
Abstract
Herrin, three Gemini cationic surfactants related to benzo[d]thiazol-3-ium bromide with variable hydrocarbon chain lengths (TBC n = 6, 12, and 18) were synthesized successfully and confirmed by using IR and 1HNMR spectroscopies. Critical micelle concentration and different thermodynamic properties of all surfactants under study were measured using conductivity, density, molal volume, and refractive index techniques. The Critical micelle concentration of TBC 6, TBC 12, and TBC 18 surfactants measured from the different techniques shows an acceptable agreement. The molecular weight of the investigated surfactants was decreased with the order: TBC 18 > TBC 12 > TBC 6. An increase in the magnitudes of the association constant, Gibbs free energy of micellization, molar refraction, polarizability, and binding constant proved the effect of hydrocarbon chain length on increasing surfactant's micellization as follows: TBC 18 < TBC 12 < TBC 6. The enhancement in surfactant properties was also indicated under the effect of different concentrations of inorganic salts (NaI, NaBr, NaCl, MnCl2, CuCl2, and CoCl2). This effect was measured using conductivity and refractive index measurements. Different salts were indicated to adsorb on head groups of micelles, leading to an increase in the degree of ionization of the surfactant solution and improved aggregation of the surfactant at lower concentrations. The increase in the negative value of Gibbs free energy of association in the presence of salts proved an increase in the stability of micelles formed in a 15% DMSO-water solvent at 298.15 K.
Collapse
Affiliation(s)
- Farid I El-Dossoki
- Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt.
| | - Mohamed A Migahed
- Department of Petroleum Applications, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| | - Mahmoud M Gouda
- Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | | |
Collapse
|
2
|
Musiał W, Caddeo C, Jankowska-Konsur A, Passiu G, Urbaniak T, Twarda M, Zalewski A. Electrical Conductivity as an Informative Factor of the Properties of Liposomal Systems with Naproxen Sodium for Transdermal Application. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5666. [PMID: 39597489 PMCID: PMC11595757 DOI: 10.3390/ma17225666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Liposomal preparations play an important role as formulations for transdermal drug delivery; however, the electrical conductivity of these systems is sparingly evaluated. The aim of the study was to outline the range of the values of electrical conductivity values that may be recorded in the future pharmaceutical systems in the context of their viscosity. The electrical conductivity, measured by a conductivity probe of k = 1.0 cm-1, and the dynamic viscosity of liposomal and non-liposomal systems with naproxen sodium, embedded into a methylcellulose hydrophilic gel (0.25%), were compared with data from preparations without naproxen sodium in a range reflecting the naproxen sodium concentrations 0.1·10-2-9.5·10-2 mol/L. The specific conductivity covered a 1.5 μS·cm-1-5616.0 μS·cm-1 range, whereas the viscosity ranged from 0.9 to 9.4 mPa·s. The naproxen sodium highly influenced the electrical conductivity, whereas the dynamic viscosity was a moderate factor. The observed phenomena may be ascribed to the high mobility of sodium ions recruited from naproxen sodium and the relatively low concentrations of applied methylcellulose. The assembly of lecithin in liposomes may have lowered the specific conductivity of the systems with naproxen sodium. These measurements will be further developed for implementation as simple assays of the concentrations of active pharmaceutical ingredient in release experiments of preparations proposed for dermatological applications.
Collapse
Affiliation(s)
- Witold Musiał
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Carla Caddeo
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, 09042 Monserrato, Italy; (C.C.)
| | - Alina Jankowska-Konsur
- Clinical Department of Oncodermatology, University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (A.J.-K.)
| | - Giorgio Passiu
- Department of Life and Environmental Sciences, University of Cagliari, SS 554—Bivio per Sestu, 09042 Monserrato, Italy; (C.C.)
| | - Tomasz Urbaniak
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Maria Twarda
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| | - Adam Zalewski
- Clinical Department of Oncodermatology, University Centre of General Dermatology and Oncodermatology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland; (A.J.-K.)
| |
Collapse
|
3
|
Ugwuoji ET, Eze IS, Nwagu TNT, Ezeogu LI. Enhancement of stability and activity of RSD amylase from Paenibacillus lactis OPSA3 for biotechnological applications by covalent immobilization on green silver nanoparticles. Int J Biol Macromol 2024; 279:135132. [PMID: 39208879 DOI: 10.1016/j.ijbiomac.2024.135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The key challenge to the biotechnological applications of amylases is achieving high activity and stability under extreme pH, temperature and often high levels of enzyme denaturants. This study immobilized a novel raw starch-digesting (RSD) amylase from Paenibacillus lactis OPSA3 on glutaraldehyde-activated silver nanoparticles. Effects of time, glutaraldehyde concentration, pH, temperature, and enzyme concentration on immobilization were studied, and the immobilized enzymes were characterized. pH 9.0 was optimum for the enzyme immobilization. The maximum immobilization efficiency of 82.23 ± 7.99 % was achieved at 25 °C for 120 min. After immobilization, the optimum pH and temperature changed from 9.0 to 11.0 and 60 to 70, respectively. Immobilization reduced the amylase's activation energy (KJ/mol) from the initial 58.862 to 45.449 following immobilization. The Km of the amylase decreased after immobilization, while the Vmax increased. The immobilized amylase showed significantly greater storage and thermal stability than the free amylase. At 80, enzyme half-life (min) and D value (min) increased from 12.33 to 179.11 and 40.94 to 594.98, respectively. The immobilized amylase (80-88 %) had more stability to the effects of the studied surfactants than the free enzyme. It also showed improved stability in the presence of commercial detergents compared to the free enzyme. The amylase's enhanced kinetic parameters and stability following successful immobilization on silver nanoparticles indicate its potential for application in the range of biotechnological processes where alkaline- and temperature-stable amylases are employed.
Collapse
Affiliation(s)
- Emmanuel Tobechukwu Ugwuoji
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria; Department of Biology, Baylor University, Waco, TX, USA; Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ifeanyi S Eze
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Tochukwu Nwamaka T Nwagu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Lewis Iheanacho Ezeogu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; UNESCO International Centre for Biotechnology, Nsukka, Nigeria.
| |
Collapse
|
4
|
Kurtaliev EN, Yarmukhamedov AS, Djamalova AA, Nizomov N, Terekhov SN. The Interaction Of Homodimer Styrylcyanine Dyes With Sodium Dodecyl Sulfate And Triton X-100. J Fluoresc 2024:10.1007/s10895-024-03921-4. [PMID: 39340599 DOI: 10.1007/s10895-024-03921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024]
Abstract
Solubilization of the styrylcyanine dye Sbt ((E)-2-(4-(dimethylamino)styryl)-3-methylbenzo[d]thiazol-3-ium iodide) and its homodimers Dbt-5 and Dbt-10 in aqueous solution of sodium dodecyl sulfate and Triton X-100 has been studied by steady state and picosecond time-resolved fluorescence spectroscopy. At low concentration of sodium dodecyl sulfate in solution, between Sbt, Dbt-5 dyes molecules and surfactant ion pairs are formed followed by the formation non-luminescent H-aggregates. The nature of the interaction between molecules of dyes and surfactants has been revealed. The binding constants Ks of the dyes to the surfactants, free energy changes (ΔG0), the number of dye molecules (n) included in a single micelle and photophysical parameters have been determined. The degree of solubilization of dyes in micellar solution of Triton X-100 is higher as compared to sodium dodecyl sulfate and depends on the molecular weight and size of both dye molecules and micelles.
Collapse
Affiliation(s)
- Eldar N Kurtaliev
- Samarkand State University, 15 University Boulevard, Samarkand, 140104, Uzbekistan.
| | | | - Asalya A Djamalova
- Samarkand State University, 15 University Boulevard, Samarkand, 140104, Uzbekistan
| | - Negmat Nizomov
- Samarkand State University, 15 University Boulevard, Samarkand, 140104, Uzbekistan
| | - Sergei N Terekhov
- B.I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, Nezavisimosti ave. 68-2, Minsk, 220072, Belarus
| |
Collapse
|
5
|
El-Dossoki FI, Migahed MA, Gouda MM, El-Maksoud SAEHA. Aggregation behavior of newly synthesized Gemini cationic surfactants in absence and in presence of different inorganic salts in 15% DMSO-water solvent. Sci Rep 2024; 14:20351. [PMID: 39223161 PMCID: PMC11369091 DOI: 10.1038/s41598-024-69559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, three Gemini cationic surfactants related to thiazol-2-amine with three hydrocarbon chain lengths including 3-hexylthiazol-3-ium (TAC6), 3-dodecylthiazol-3-ium (TAC12) and octadecylthiazol3-ium (TAC18) were prepared. Surfactant structures were confirmed with IR and 1HNMR Spectroscopies. Critical micelle concentrations for all surfactants in 15% DMSO-Water solvent were measured using conductometric, refractometric, and densitometric techniques. Thermodynamics parameters were computed and explained. Also, enhancing properties of all surfactants were indicated under the effect of two concentrations, 0.001 M and 0.01 M, of six inorganic salts including Cl-, Br-, I-, Co+2, Cu+2, and Mn+2 radicals using conductivity and refractive index measurements. All techniques used to measure critical micelles concentration showed a good convergence in measuring CMC values and the behavior of all surfactants in 15% DMSO-water solvent. Increasing the binding constant of the counter ion and association constant reflects the effect of hydrocarbon chain length increment on enhancing micelle formation, where TAC 18 was shown as the lowest CMC in all applied measurements. Modeling the density of all surfactant solutions under study indicates an increase in hydrophobic polarizability with an increase in the molecular weight of the surfactant. Inorganic salts decreased the CMC of all surfactants with the increase in Gibbs free energy of micellization which ensures easier formation of more stable micelles in the presence of a salt solution. The effect of salts on decreasing CMC for all surfactants under study was arranged in the following order: Mn+2 < Cu+2 < Co+2 for cationic radicals and I- < Br- < Cl- for anionic radicals.
Collapse
Affiliation(s)
- Farid I El-Dossoki
- Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt.
| | - Mohamed A Migahed
- Department of Petroleum Applications, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| | - Mahmoud M Gouda
- Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | | |
Collapse
|
6
|
Park JS, Seo JH, Jeong MY, Yang IG, Kim JS, Kim JH, Ho MJ, Jin SG, Choi MK, Choi YS, Kang MJ. Carboxymethyl cellulose-based rotigotine nanocrystals-loaded hydrogel for increased transdermal delivery with alleviated skin irritation. Carbohydr Polym 2024; 338:122197. [PMID: 38763711 DOI: 10.1016/j.carbpol.2024.122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/21/2024]
Abstract
Transdermal rotigotine (RTG) therapy is prescribed to manage Parkinson's disease (Neupro® patch). However, its use is suffered from application site reactions. Herein, drug nanocrystalline suspension (NS)-loaded hydrogel (NS-HG) employing polysaccharides simultaneously as suspending agent and hydrogel matrix was constructed for transdermal delivery, with alleviated skin irritation. RTG-loaded NS-HG was prepared using a bead-milling technique, employing sodium carboxylmethyl cellulose (Na.CMC) as nano-suspending agent (molecular weight 90,000 g/mol) and hydrogel matrix (700,000 g/mol), respectively. NS-HG was embodied as follows: drug loading: ≤100 mg/mL; shape: rectangular crystalline; crystal size: <286.7 nm; zeta potential: -61 mV; viscosity: <2.16 Pa·s; and dissolution rate: >90 % within 15 min. Nuclear magnetic resonance analysis revealed that the anionic polymers bind to RTG nanocrystals via charge interaction, affording uniform dispersion in the matrix. Rodent transdermal absorption of RTG from NS-HG was comparable to that from microemulsions, and proportional to drug loading. Moreover, NS-HG was skin-friendly; erythema and epidermal swelling were absent after repeated application. Further, NS-HG was chemically stable; >95 % of the drug was preserved up to 4 weeks under long term (25 °C/RH60%), accelerated (40 °C/RH75%), and stress (50 °C) storage conditions. Therefore, this novel cellulose derivative-based nanoformulation presents a promising approach for effective transdermal RTG delivery with improved tolerability.
Collapse
Affiliation(s)
- Jun Soo Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Jae Hee Seo
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Min Young Jeong
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - In Gyu Yang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Ji Seong Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Jin Hwan Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Myoung Jin Ho
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Sung Giu Jin
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Min Koo Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea
| | - Yong Seok Choi
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea.
| | - Myung Joo Kang
- College of Pharmacy, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungnam 330-714, Republic of Korea.
| |
Collapse
|
7
|
Ainurofiq A, Rahayu BG, Murtadla FA, Kuncahyo I, Windarsih A, Choiri S. QbD-based formulation development of resveratrol nanocrystal incorporated into soluble mesoporous material: Pharmacokinetic proof of concept study. Int J Pharm 2024; 661:124459. [PMID: 38996822 DOI: 10.1016/j.ijpharm.2024.124459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Resveratrol (RSV) has powerful antioxidant activities. However, the bioavailability is still limited due to low solubility and transport issues. Nanocrystal technology has been introduced to address these issues; however, the bulky formulation of the nanocrystal process through nanosuspension faces a big challenge in terms of stability and scale-up ability. This work aimed to enhance the bioavailability of RSV through nanocrystal formulation incorporated into soluble mesoporous carriers for superior solid-state stability and feasibility. This formulation was designed and developed rationally through scientific justification in the nanocrystal formulation along with quality by design paradigm. Box-Behnken design was applied to determine the optimized formulation based on the particle size and distribution, drug loading, zeta potential, and supersaturation parameters. The nanocrystal was formed through evaporation of drug, polymer, and surfactant in the solvent incorporated into mesoporous material. The nanocrystal was evaluated by vibrational spectroscopy, thermal analyses, and SEM and TEM photographs, followed by crystallinity evaluation. The results indicated that the factors only affected the particle size variation, zeta potential, drug loading, and the time to reach the supersaturation peak level. The optimized formulation was achieved by 68 % desirability value, producing 133.3 ± 1.2 nm particle size and -24.6 mV zeta potential. The physical and chemical evaluation characterization indicated no interaction between RSV and carrier. In addition, there was no difference in crystallinity between the RSV nanocrystal and native RSV. Moreover, the RSV nanocrystal improved the bioavailability nearly twice compared to the RSV suspension.
Collapse
Affiliation(s)
- Ahmad Ainurofiq
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta, 57126 Indonesia
| | - Bingah Ginanjar Rahayu
- Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta, 57126 Indonesia
| | | | - Ilham Kuncahyo
- Faculty of Pharmacy, Universitas Setia Budi, Mojosongo, Surakarta, 57127 Indonesia
| | - Anjar Windarsih
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta, 55861 Indonesia
| | - Syaiful Choiri
- Pharmaceutical Technology and Drug Delivery, Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta, 57126 Indonesia.
| |
Collapse
|
8
|
Veeramanoharan A, Kim SC. A comprehensive review on sustainable surfactants from CNSL: chemistry, key applications and research perspectives. RSC Adv 2024; 14:25429-25471. [PMID: 39139242 PMCID: PMC11320967 DOI: 10.1039/d4ra04684f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Surfactants, a group of amphiphilic molecules (i.e. with hydrophobic(water insoluble) as well as hydrophilic(water soluble) properties) can modulate interfacial tension. Currently, the majority of surfactants depend on petrochemical feedstocks (such as oil and gas). However, deployment of these petrochemical surfactants produces high toxicity and also has poor biodegradability which can cause more environmental issues. To address these concerns, the current research is moving toward natural resources to produce sustainable surfactants. Among the available natural resources, Cashew Nut Shell Liquid (CNSL) is the preferred choice for industrial scenarios to meet their goals of sustainability. CNSL is an oil extracted from non-edible cashew nut shells, which doesn't affect the food supply chain. The unique structural properties and diverse range of use cases of CNSL are key to developing eco-friendly surfactants that replace petro-based surfactants. Against this backdrop, this article discusses various state-of-the-art developments in key cardanol-based surfactants such as anionic, cationic, non-ionic, and zwitterionic. In addition to this, the efficiency and characteristics of these surfactants are also analyzed and compared with those of the synthetic surfactants (petro-based). Furthermore, the present paper also focuses on various market aspects and different applications in various industries. Finally, this article describes various future research perspectives including Artificial Intelligence technology which, of late, is having a huge impact on society.
Collapse
Affiliation(s)
- Ashokkumar Veeramanoharan
- Department of Applied Chemistry, College of Science and Technology, Kookmin University 77 Jeongneung-ro, Sungbuk-Gu Seoul 02707 Republic of Korea
| | - Seok-Chan Kim
- Department of Applied Chemistry, College of Science and Technology, Kookmin University 77 Jeongneung-ro, Sungbuk-Gu Seoul 02707 Republic of Korea
| |
Collapse
|
9
|
Shoukat J, Abd-Ur-Rahman HM, Jan Muhammad A, Obaid S, Imtiaz F, Kanwal N, Mnif W, Ali A, Nazir A, Ahmad N, Iqbal M. The interaction between formylphenoxyacetic acid derivatives (chalcone and flavones) and ionic surfactants: Insights into binding constants, solubilisation and physiochemical properties. Colloids Surf B Biointerfaces 2024; 240:113976. [PMID: 38795585 DOI: 10.1016/j.colsurfb.2024.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
In this study, UV-vis spectroscopy was employed to investigate the interaction between formylphenoxyacetic acid (FPAA) and its derivatives (chalcone and flavones) with ionic surfactants (SDS, CTAB, and DTAB) in different physiological environments. Changes in the physiochemical properties of FPAA chalcone and flavones including binding constants, partitioning constants, and Gibbs free energy were observed which were influenced by the presence of ionic surfactants computed using mathematical models. The solubilization of the targeted compounds in the ionic surfactants was determined through the binding constant (Kb). The results of the present study indicated that electrostatic interactions played a significant role in the solubilization of the targeted compounds in SDS, CTAB, and DTAB. At pH 4.1, FPAA chalcone exhibited stronger binding affinity with SDS compared to CTAB and DTAB. However, at pH 7.4, chalcone showed stronger binding with DTAB compared to SDS, while negligible interaction with CTAB was observed at pH 7.4. The flavones demonstrated stronger binding with DTAB at pH 7.4 compared to SDS and CTAB and it exhibited strong bonding with CTAB at pH 4.1. The negative values of the Gibbs free energy for binding (ΔGb˚) and partitioning (ΔGp˚) constants displayed the spontaneity of the process. However, FPAA chalcone with SDS and FPAA flavones with DTAB furnished positive ΔGb˚, indicating a non-spontaneous process.
Collapse
Affiliation(s)
- Jawad Shoukat
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | | | - Amber Jan Muhammad
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Saherah Obaid
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Faiza Imtiaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Nosheen Kanwal
- Department of Chemistry, College of Science, Qassim University, Almolaydah, Buraydah 51452, Saudi Arabia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences at Bisha, University of Bisha, P.O. BOX 199, Bisha 61922, Saudi Arabia
| | - Abid Ali
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Arif Nazir
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Naveed Ahmad
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan.
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan.
| |
Collapse
|
10
|
Acharya S, Carpenter J, Madakyaru M, Dey P, Vatti AK, Banerjee T. Ciprofloxacin and Azithromycin Antibiotics Interactions with Bilayer Ionic Surfactants: A Molecular Dynamics Study. ACS OMEGA 2024; 9:33174-33182. [PMID: 39100351 PMCID: PMC11292829 DOI: 10.1021/acsomega.4c04673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024]
Abstract
The introduction of pharmaceuticals into aquatic ecosystems can lead to the generation of antibiotic-resistant bacteria. This paper employed molecular dynamics simulations to examine the interactions between cationic/anionic surfactants and two antibiotics or drugs, namely, ciprofloxacin and azithromycin. The analysis focused on many factors to elucidate the mechanism by which the surfactant bilayer molecular structure affects the selected antibiotics. These factors include the tilt angle, rotational angle of the surfactants, electrostatic potential, and charge density along the bilayers. Our molecular-level investigation of the adsorption mechanisms of hydrophobic (azithromycin) and hydrophilic (ciprofloxacin) drugs on the cationic/anionic surfactant bilayer offers a crucial understanding for comprehending the optimal selection of surfactants for effectively separating antibiotics.
Collapse
Affiliation(s)
- Sriprasad Acharya
- Department
of Chemical Engineering, Manipal Institute
of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Jitendra Carpenter
- Department
of Chemical Engineering, Manipal Institute
of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Muddu Madakyaru
- Department
of Chemical Engineering, Manipal Institute
of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Poulumi Dey
- Department
of Materials Science and Engineering, Faculty of Mechanical Engineering
(ME), Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Anoop Kishore Vatti
- Department
of Chemical Engineering, Manipal Institute
of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Tamal Banerjee
- Department
of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
11
|
Duan Y, Pancholi H, Undre PB, Prajapati HR, Pavagadhi TH, Sangani CB, Khalid Parvez M, Al-Dosari MS, Undre SB. Effect of Tween and CTAB surfactants on aqueous solubility of the silibinin anticancer drug studied by using physicochemical properties at 310.15 K. J Mol Liq 2024; 406:125040. [DOI: 10.1016/j.molliq.2024.125040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
|
12
|
Zhu Y, Wang B, Farooq U, Li Y, Qi Z, Zhang Q. Effects of surfactants on the adsorption of norfloxacin onto ferrihydrite: comparison between anionic and cationic surfactants. ENVIRONMENTAL TECHNOLOGY 2024:1-11. [PMID: 38770654 DOI: 10.1080/09593330.2024.2354056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
There is little information on how widespread surfactants affect the adsorption of norfloxacin (NOR) onto iron oxide minerals. In order to elucidate the effects of various surfactants on the adsorption characteristics of NOR onto typical iron oxides, we have explored the different influences of sodium dodecylbenzene sulfonate (SDBS), an anionic surfactant, and didodecyldimethylammonium bromide (DDAB), a cationic surfactant, on the interactions between NOR and ferrihydrite under different solution chemistry conditions. Interestingly, SDBS facilitated NOR adsorption, whereas DDAB inhibited NOR adsorption. The adsorption-enhancement effect of SDBS was ascribed to the enhanced electrostatic attraction, the interactions between the adsorbed SDBS on ferrihydrite surfaces and NOR molecules, and the bridging effect of SDBS between NOR and iron oxide. In comparison, the adsorption-inhibition effect of DDAB owning to the adsorption site competitive adsorption between NOR and DDAB for the effective sites as well as the steric hindrance between NOR-DDAB complexes and the adsorbed DDAB on ferrihydrite surfaces. Additionally, the magnitude of the effects of surfactants on NOR adsorption declined with increasing pH values from 5.0 to 9.0, which was related to the amounts of surfactant binding to ferrihydrite surfaces. Moreover, when the background electrolyte was Ca2+, the enhanced effect of SDBS on NOR adsorption was caused by the formation of NOR-Ca2+-SDBS complexes. The inhibitory effect of DDAB was due to the DDAB coating on ferrihydrite, which undermined the cation-bridging effect. Together, the findings from this work emphasize the essential roles of widely existing surfactants in controlling the environmental fate of quinolone antibiotics.
Collapse
Affiliation(s)
- Yuwei Zhu
- Ecology Institute of the Shandong academy of sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Bin Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Usman Farooq
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Yanxiang Li
- The Testing Center of Shandong Bureau of China Metallurgical Geology Bureau, Jinan, People's Republic of China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, People's Republic of China
| | - Qiang Zhang
- Ecology Institute of the Shandong academy of sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
13
|
Shah AH, Islam SMR, Albaqami MD, Hasan T, Kumar D, Wabaidur SM, Ansari MZ, Hoque MA, Islam DMS, Kabir M. Study on the association and phase separation behavior of surfactants and promethazine hydrochloride: impact of ammonium electrolytes. RSC Adv 2024; 14:5981-5993. [PMID: 38362074 PMCID: PMC10867899 DOI: 10.1039/d3ra07493e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024] Open
Abstract
In the current study, the association and phase separation of cationic tetradecyltrimethylammonium bromide (TTAB) and nonionic Triton X-100 (TX-100) surfactants with promethazine hydrochloride (PMH) were investigated in aqueous ammonium-based solutions. The micellization nature of the TTAB and PMH drug mixture was examined by evaluating critical micelle concentration (CMC) and counterion binding extent (β) at different salt contents and temperatures (298.15-323.15 K). Micelle formation in the TTAB + PMH mixture was enhanced in the presence of ammonium salts, whereas the process was delayed with an increase in temperature in the respective salt solution. With an increase in salt content, the cloud point (CP) of the TX-100 + PMH mixture decreased, which revealed that the respective progression occurred through the salting out phenomenon. In micellization and clouding processes, the changes in free energies ΔG0m and ΔG0c were found to be negative and positive, respectively, demonstrating that the corresponding processes are spontaneous and non-spontaneous. Standard enthalpies (ΔH0m/ΔH0c) and standard entropies (ΔS0m/ΔS0c) for the association and clouding processes, respectively, were also calculated and discussed. The core forces amid TTAB/TX-100 and PMH in the manifestation of electrolytes are dipole-dipole and hydrophobic forces among the employed components according to the values for ΔH0m/ΔH0c and ΔS0m/ΔS0c, respectively.
Collapse
Affiliation(s)
- Afzal Hossain Shah
- Department of Chemistry, Jahangirnagar University Savar Dhaka 1342 Bangladesh
| | - S M Rafiul Islam
- Department of Chemistry, Jahangirnagar University Savar Dhaka 1342 Bangladesh
| | - Munirah D Albaqami
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Tajmul Hasan
- Department of Chemistry, Jahangirnagar University Savar Dhaka 1342 Bangladesh
| | - Dileep Kumar
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University Ho Chi Minh City Vietnam +84 943720085
- Faculty of Applied Technology, School of Technology, Van Lang University Ho Chi Minh City Vietnam
| | | | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University Gyeongsan 712749 South Korea
| | - Md Anamul Hoque
- Department of Chemistry, Jahangirnagar University Savar Dhaka 1342 Bangladesh
| | - D M Shafiqul Islam
- Department of Chemistry, Jahangirnagar University Savar Dhaka 1342 Bangladesh
| | - Mahbub Kabir
- Department of Chemistry, Jahangirnagar University Savar Dhaka 1342 Bangladesh
| |
Collapse
|
14
|
Baghel D, Kumar Banjare M. Host-guest complexation between β-cyclodextrin and phosphonium-based ionic liquid and influence of its inclusion complex on the binding property of paracetamol drug. J Mol Liq 2023; 389:122867. [DOI: https:/doi.org/10.1016/j.molliq.2023.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|