1
|
Zhang G, Wu X, Mao S, Li M, Hu H, Shi BF, Zhu WH. Pd(ii)-catalyzed enantioselective C-H olefination and photoregulation of sterically hindered diarylethenes. Chem Sci 2024; 15:20013-20021. [PMID: 39568903 PMCID: PMC11575610 DOI: 10.1039/d4sc05375c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Sterically hindered diarylethenes with intrinsic chirality have shown great potential in chiral signal regulation, light-controlled liquid crystals (LCs), etc. Their unique enantiospecific phototransformation between axial chirality of ring-open isomers and central chirality of ring-closed isomers can break through the bottleneck of interference between multiple chiral centers in traditional chiral diarylethenes. However, these intrinsic chiral diarylethenes require necessary chiral resolution through preparative chiral HPLC, typically resulting in limited separation efficiency and production scale. Here, we present an enantioselective olefination strategy to directly construct intrinsic chiral diarylethenes from a prochiral sterically hindered diarylethene, achieving high yields and enantioselectivity. The resulting isomers can be further decorated by incorporating mesogenic units, and the derivatives enable the successful reversible photoregulation of blue, green, and red reflection colors of LCs with excellent thermal stability, fatigue resistance, and little texture disorderliness, demonstrating the practical application potential of direct enantioselective olefination in photoregulation with intrinsic chiral diarylethenes.
Collapse
Affiliation(s)
- Guanlun Zhang
- Key Laboratory for Advanced Material, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Xu Wu
- Department Center of Chemistry for Frontier Technologies, Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Shiyu Mao
- Department Center of Chemistry for Frontier Technologies, Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Mengqi Li
- Key Laboratory for Advanced Material, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Honglong Hu
- Key Laboratory for Advanced Material, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| | - Bing-Feng Shi
- Department Center of Chemistry for Frontier Technologies, Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Material, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology Shanghai 200237 China
| |
Collapse
|
2
|
Xu W, Noruzi EB, Li G, Qu H, Zhang H, Ma C, He Q, Li X, Periyasami G, Li H. Controlled Release of La 3+ Ions for Enhanced Wheat Seed Germination Based on Phosphate Pillar[5]arene Nanogating. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25500-25508. [PMID: 39498790 DOI: 10.1021/acs.jafc.4c06529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Rare earth elements (REEs), vital and limited resources, also play a significant role in agriculture. Previous findings indicated that the proper concentration of REEs could enhance the germination process, seed germination rate, and seedling growth and development. This paper introduces designing, synthesizing, and assembling a new type of tapered nanogates for separating and detecting lanthanide ions (La3+). A phosphoric acid pillar[5]arene (PP5) was synthesized and incorporated as a receptor molecule for La3+ in aqueous media. Incorporating these receptor molecules into the nanogates enhances the identification and controlled release of the lanthanide ions in water. The UV titration and COMSOL simulation results demonstrated an interaction between PP5 and La3+ to strengthen the understanding of the release mechanism. Finally, the effect of released La3+ on the germination of wheat seeds is discussed, demonstrating the ability to improve its application in the agricultural industry.
Collapse
Affiliation(s)
- WeiWei Xu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Ehsan Bahojb Noruzi
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Guang Li
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Haonan Qu
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Haifang Zhang
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Cuiguang Ma
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Qiang He
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xiangcheng Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Govindasami Periyasami
- Department: Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Haibing Li
- State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
| |
Collapse
|
3
|
Zhou WL, Wu YG, Wang S, Zhang R, Wang LH, Liu J, Xu X. Laponite-activated AIE supramolecular assembly with modulating multicolor luminescence for logic digital encryption and perfluorinated pollutant detection. Biosens Bioelectron 2024; 258:116343. [PMID: 38718636 DOI: 10.1016/j.bios.2024.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Recently, the non-covalently activated supramolecular scaffold method has become a prominent research area in the field of intelligent materials. Here, the inorganic clay (LP) promoted the AIE properties of 4,4',4″,4‴-(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis(1-ethylpyridin-1-ium) (P-TPE), showing an astonishing 42-fold enhancement of the emission intensity of the yellow-green luminescence and a 34-fold increase of the quantum yield via organic-inorganic supramolecular strategy as well as the efficient light-harvesting properties (energy transfer efficiency up to 33 %) after doping with the dye receptor Rhodamine B. Furthermore, the full-color spectral regulation, including white light, was achieved by adjusting the ratio of the donor to the acceptor component and co-assembling with the carbon dots (CD). Interestingly, this TPE-based non-covalently activated full-color supramolecular light-harvesting system (LHS) could be achieved not only in aqueous media but also in the hydrogel and the solid state. More importantly, this panchromatic tunable supramolecular LHS exhibited the multi-mode and quadruple digital logic encryption property as well as the specific detection ability towards the perfluorobutyric acid and the perfluorobutanesulfonic acid, which are harmful to human health in drinking water. This result develops a simple, convenient and effective approach for the intelligent anti-counterfeiting and the pollutant sensing.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China; College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Yun-Ga Wu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Siwei Wang
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Rong Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Li-Hua Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jinglin Liu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
4
|
Gu MJ, Han XN, Han Y, Chen CF. Strategies for Constructing Macrocyclic Arene-Based Color-Tunable Supramolecular Luminescent Materials. Chempluschem 2024; 89:e202400023. [PMID: 38288886 DOI: 10.1002/cplu.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Over the past decades, supramolecular luminescent materials (SLMs) have attracted considerable attention due to their dynamic noncovalent interactions, versatile functions, and intriguing applications in many research fields. From construction to application, great efforts and progress have been made in color-tunable SLMs in recent years. In order to realize multicolor luminescence, various design strategies have been proposed. Macrocyclic chemistry, one of the brightest jewels in the field of supramolecular chemistry, has played a crucial role in the construction of stimuli-responsive and emission-tunable SLMs. Moreover, the flexible and tunable conformation and multiple noncovalent complexation sites of the macrocyclic arenes (MAs) afford a new opportunity to create such dynamic smart luminescent materials. Inspired by our reported work on the color-tunable supramolecular crystalline assemblies modulated by the conformation of naphth[4]arene, this Concept provides a summary of the latest developments in the construction of color-tunable MA-based SLMs, accompanied by the various construction strategies. The aim is to provide researchers with a new perspective to construct color-tunable SLMs with fascinating functions.
Collapse
Affiliation(s)
- Meng-Jie Gu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
- University of Chinese Academy of Science, Beijing, 100084, China
| | - Xiao-Ni Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 1, 00190, China
- University of Chinese Academy of Science, Beijing, 100084, China
| |
Collapse
|
5
|
Xia D, Cheng Y, Zhang M, Ma J, Liang B, Wang P. Regulation of Fluorescence and Self-assembly of a Salicylaldehyde Azine-Containing Amphiphile by Pillararene. Chemistry 2024; 30:e202304200. [PMID: 38340042 DOI: 10.1002/chem.202304200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Regulation of fluorescence and self-assembly of a salicylaldehyde azine-containing amphiphile by a water-soluble pillar[5]arene via host-guest recognition in water was realized. The fluorescence and the self-assembled aggregates of the bola-type amphiphile G can be tailored by adding different amounts of water-soluble pillar[5]arene (WP5). In addition, the emission property and self-assembly behavior of G and WP5 are responsive to pH conditions. Furthermore, the fluorescence emission property of G and the regulation by WP5 or pH conditions was applied as information encryption material, rewritable paper, and erasable ink. We believe that this fluorescence regulation strategy is promising for the construction of advanced fluorescent organic materials.
Collapse
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yujie Cheng
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
| | - Meiru Zhang
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
| | - Jiaxin Ma
- Scientific Instrument Center, Shanxi University, Taiyuan, 030006, P. R. China
| | - Bicong Liang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Pi Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Zhang R, Chen Y, Liu Y. Light-Driven Reversible Multicolor Supramolecular Shuttle. Angew Chem Int Ed Engl 2023; 62:e202315749. [PMID: 37971202 DOI: 10.1002/anie.202315749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Light-driven multicolor supramolecular systems mainly rely on the doping of dyes or a photo-reaction to produce unidirectional luminescence. Herein, we use visible light to drive the bidirectional reversible multicolor supramolecular shuttle from blue to green, white, yellow, up to orange by simple encapsulation of spiropyran-modified cyanostilbene (BCNMC) by the macrocyclic cucurbit[8]uril (CB[8]) monomer. The resultant host-guest complex displayed enhanced fluorescence properties, i.e. the multicolor fluorescence shuttle changed from blue to orange in the dark within 2 hours and reverted to the original state upon visible light irradiation for 30 s. Benefiting from the sensitivity of the spiropyran moiety to light, it can spontaneously isomerize from the ring-opened state to a ring-closed isomer in aqueous solution, and this photo-isomerization reaction is a reversible process under visible light irradiation, leading to the multicolor luminescence supramolecular shuttle as a result of intramolecular energy transfer. In addition, the light also drove the reversible conversion of the topological morphology of the host-guest complex from two-dimensional nanoplatelets to nanospheres. Different from the widely reported molecular rotaxane "shuttle", the spiropyran supramolecular shuttle confined in the macrocyclic host CB[8] not only modulated a reversible topological morphology by light but also exhibited multicolor luminescence, which was successfully applied in programmed and rewritable information encryption.
Collapse
Affiliation(s)
- Rong Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, P. R. China
| |
Collapse
|
7
|
Li X, Jin Y, Zhu N, Jin LY. Applications of Supramolecular Polymers Generated from Pillar[ n]arene-Based Molecules. Polymers (Basel) 2023; 15:4543. [PMID: 38231964 PMCID: PMC10708374 DOI: 10.3390/polym15234543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Supramolecular chemistry enables the manipulation of functional components on a molecular scale, facilitating a "bottom-up" approach to govern the sizes and structures of supramolecular materials. Using dynamic non-covalent interactions, supramolecular polymers can create materials with reversible and degradable characteristics and the abilities to self-heal and respond to external stimuli. Pillar[n]arene represents a novel class of macrocyclic hosts, emerging after cyclodextrins, crown ethers, calixarenes, and cucurbiturils. Its significance lies in its distinctive structure, comparing an electron-rich cavity and two finely adjustable rims, which has sparked considerable interest. Furthermore, the straightforward synthesis, uncomplicated functionalization, and remarkable properties of pillar[n]arene based on supramolecular interactions make it an excellent candidate for material construction, particularly in generating interpenetrating supramolecular polymers. Polymers resulting from supramolecular interactions involving pillar[n]arene find potential in various applications, including fluorescence sensors, substance adsorption and separation, catalysis, light-harvesting systems, artificial nanochannels, and drug delivery. In this context, we provide an overview of these recent frontier research fields in the use of pillar[n]arene-based supramolecular polymers, which serves as a source of inspiration for the creation of innovative functional polymer materials derived from pillar[n]arene derivatives.
Collapse
Affiliation(s)
| | | | - Nansong Zhu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| |
Collapse
|
8
|
Zhou WL, Lin W, Chen Y, Dai XY, Liu Y. Tunable Multicolor Lanthanide Supramolecular Assemblies with White Light Emission Confined by Cucurbituril[7]. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304009. [PMID: 37442787 DOI: 10.1002/smll.202304009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Macrocyclic confinement-induced supramolecular luminescence materials have important application value in the fields of bio-sensing, cell imaging, and information anti-counterfeiting. Herein, a tunable multicolor lanthanide supramolecular assembly with white light emission is reported, which is constructed by co-assembly of cucurbit[7]uril (CB[7]) encapsulating naphthylimidazolium dicarboxylic acid (G1 )/Ln (Eu3+ /Tb3+ ) complex and carbon quantum dots (CD). Benefiting from the macrocyclic confinement effect of CB[7], the supramolecular assembly not only extends the fluorescence intensity of the lanthanide complex G1 /Tb3+ by 36 times, but also increases the quantum yield by 28 times and the fluorescence lifetime by 12 times. Furthermore, the CB[7]/G1 /Ln assembly can further co-assemble with CD and diarylethene derivatives (DAE) to realize the intelligently-regulated full-color spectrum including white light, which results from the competitive encapsulation of adamantylamine and CB[7], the change of pH, and photochromic DAE. The multi-level logic gate based on lanthanide supramolecular assembly is successfully applied in anti-counterfeiting system and information storage, providing an effective method for the research of new luminescent intelligent materials.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
- College of Chemistry and Material Science, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao, 028000, P. R. China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|