1
|
Sorroche A, Reboiro F, Monge M, López-de-Luzuriaga JM. Recent Trends in Group 11 Hydrogen Bonding. Chempluschem 2024; 89:e202400273. [PMID: 38764413 DOI: 10.1002/cplu.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Conventional hydrogen bonding (H-bonding) has been extensively studied in organic and biological systems. However, its role in transition metal chemistry, particularly with Group 11 metals (i. e. Cu, Ag, Au) as hydrogen bond acceptors, remains relatively unexplored. Through a combination of experimental techniques, such as Nuclear Magnetic Resonance (NMR), Infrared spectroscopy (IR), X-Ray Diffraction (XRD), and computational calculations, several aspects of H-bonding interactions with Group 11 metals are examined, shedding light on its impact on structural motifs and reactivity. These include bond strengths, geometries, and effects on electronic structures. Understanding the intricacies of hydrogen bonding within transition metal chemistry holds promise for various applications, including catalytic transformations, the construction of molecular assemblies, synthesis of complexes displaying anticancer activities, or luminescence applications (e. g. Thermally Activated Delayed Fluorescence, TADF). This review encompasses the most significant recent advances, challenges, and future prospects in this emerging field.
Collapse
Affiliation(s)
- Alba Sorroche
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Félix Reboiro
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - Miguel Monge
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| | - José María López-de-Luzuriaga
- Departamento de Química, Instituto de Investigación en Química (IQUR), Universidad de La Rioja, Complejo Científico-Tecnológico, 26006, Logroño, Spain
| |
Collapse
|
2
|
Pei XL, Zhao P, Ube H, Lei Z, Ehara M, Shionoya M. Single-gold etching at the hypercarbon atom of C-centred hexagold(I) clusters protected by chiral N-heterocyclic carbenes. Nat Commun 2024; 15:5024. [PMID: 38866773 PMCID: PMC11169362 DOI: 10.1038/s41467-024-49295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Chemical etching of nano-sized metal clusters at the atomic level has a high potential for creating metal number-specific structures and functions that are difficult to achieve with bottom-up synthesis methods. In particular, precisely etching metal atoms one by one from nonmetallic element-centred metal clusters and elucidating the relationship between their well-defined structures, and chemical and physical properties will facilitate future materials design for metal clusters. Here we report the single-gold etching at a hypercarbon centre in gold(I) clusters. Specifically, C-centred hexagold(I) clusters protected by chiral N-heterocyclic carbenes are etched with bisphosphine to yield C-centred pentagold(I) (CAuI5) clusters. The CAuI5 clusters exhibit an unusually large bathochromic shift in luminescence, which is reproduced theoretically. The etching mechanism is experimentally and theoretically suggested to be a tandem dissociation-association-elimination pathway. Furthermore, the vacant site of the central carbon of the CAuI5 cluster can accommodate AuCl, allowing for post-functionalisation of the C-centred gold(I) clusters.
Collapse
Affiliation(s)
- Xiao-Li Pei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Pei Zhao
- Research Centre for Computational Science, Institute for Molecular Science and SOKENDAI, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hitoshi Ube
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Zhen Lei
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Masahiro Ehara
- Research Centre for Computational Science, Institute for Molecular Science and SOKENDAI, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
3
|
Alam N, Das AK, Chandrashekar P, Baidya P, Mandal S. Recent progress in atomically precise silver nanocluster-assembled materials. NANOSCALE 2024; 16:10087-10107. [PMID: 38713237 DOI: 10.1039/d4nr01411a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In the dynamic landscape of nanotechnology, atomically precise silver nanoclusters (Ag NCs) have emerged as a novel and promising category of materials with their fascinating properties and enormous potential. However, recent research endeavors have surged towards stabilizing Ag-based NCs, leading to innovative strategies like connecting cluster nodes with organic linkers to construct hierarchical structures, thus forming Ag-based cluster-assembled materials (CAMs). This approach not only enhances structural stability, but also unveils unprecedented opportunities for CAMs, overcoming the limitations of individual Ag NCs. In this context, this review delves into the captivating realm of atomically precise nitrogen-based ligand bonded Ag(I)-based CAMs, providing insights into synthetic strategies, structure-property relationships, and diverse applications. We navigate the challenges and advancements in integrating Ag(I) cluster nodes, bound by argentophilic interactions, into highly connected periodic frameworks with different dimensionalities using nitrogen-based linkers. Despite the inherent diversity among cluster nodes, Ag(I) CAMs demonstrate promising potential in sensing, catalysis, bio-imaging, and device fabrication, which all are discussed in this review. Therefore, gaining insight into the silver nanocluster assembly process will offer valuable information, which can enlighten the readers on the design and advancement of Ag(I) CAMs for state-of-the-art applications.
Collapse
Affiliation(s)
- Noohul Alam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Priyanka Chandrashekar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Priyadarshini Baidya
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India 695551.
| |
Collapse
|
4
|
Wang M, Zhang GP. Tuning the polarity of charge carriers in N-heterocyclic carbene-based single-molecule junctions via atomic manipulation. Phys Chem Chem Phys 2024; 26:9051-9059. [PMID: 38441317 DOI: 10.1039/d3cp04677j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Tuning the polarity of charge carriers at a single-molecular level is essential for designing complementary logic circuits in the field of molecular electronics. Herein, the transport properties of N-heterocyclic carbene (NHC)-linked single-molecule junctions are investigated using the ab initio quantum transport approach. The results reveal that the hydrogen atoms in NHCs function as a switch for regulating the polarity of charge carriers. Dehydrogenation changes the chemical nature of NHC anchors, thereby rendering holes as the major charge carriers rather than electrons. Essentially, dehydrogenation changes the anchoring group from electron-rich to electron-deficient. The electrons transferred to molecules from the electrodes raise the molecular level closer to the Fermi level, thus resulting in charge carrier polarity conversion. This conversion is influenced by the position and number of hydrogen atoms in the NHC anchors. To efficiently and decisively alter charge carrier polarity via atomic manipulation, a methyl substitution approach is developed and verified. These results confirm that atomic manipulation is a significant method for modulating the polarity of charge carriers in NHC-based single-molecule devices.
Collapse
Affiliation(s)
- Minglang Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Guang-Ping Zhang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
5
|
Silalahi RPB, Chiu TH, Liang H, Kahlal S, Saillard JY, Liu CW. A heteroleptic fused bi-cuboctahedral Cu21S2 cluster. Chem Commun (Camb) 2023. [PMID: 37464924 DOI: 10.1039/d3cc02936k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
A new dicationic cluster, [Cu21S2{S2CNnBu2}9(C2Ph)6]2+, where the Cu21S2 kernel consists of two S@Cu12 cuboctahedra sharing a triangular Cu3 face is reported. Its waist part is bridged by three dithiocarbamate ligands, each in a hexaconnective, hexametallic (μ3, μ3) coordination pattern, an unprecedented feature in Cu nanocluster chemistry.
Collapse
Affiliation(s)
- Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien 97401, Taiwan, Republic of China.
| | - Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien 97401, Taiwan, Republic of China.
| | - Hao Liang
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | | | - C W Liu
- Department of Chemistry, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd. Shoufeng, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|