1
|
Honda T, Ehara T, Sato R, Ogawa T, Kuramochi Y, Satake A, Miyata K, Onda K. Photoexcitation and One-Electron Reduction Processes of a CO 2 Photoreduction Dyad Catalyst Having a Zinc(II) Porphyrin Photosensitizer. Inorg Chem 2024. [PMID: 39380369 DOI: 10.1021/acs.inorgchem.4c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
We have explored the photophysical properties and one-electron reduction process in the dyad photocatalyst for CO2 photoreduction, ZnP-phen=Re, in which the catalyst of fac-[Re(1,10-phenanthoroline)(CO)3Br] is directly connected with the photosensitizer of zinc(II) porphyrin (ZnP), using time-resolved infrared spectroscopy, transient absorption spectroscopy, and quantum chemical calculations. We revealed the following photophysical properties: (1) the intersystem crossing occurs with a time constant of ∼20 ps, which is much faster than that of a ZnP single unit, and (2) the charge density in the excited singlet and triplet states is mainly localized on ZnP, which means that the excited state is assignable to the π-π* transition in ZnP. The one-electron reduction by 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole occurs via the triplet excited state with the time constant of ∼100 ns and directly from the ground state with the time constant of ∼3 μs. The charge in the one-electron reduction species spans ZnP and the phenanthroline ligand, and the dihedral angle between ZnP and the phenanthroline ligand is rotated by ∼24° with respect to that in the ground state, which presumably offers an advantage for proceeding to the next CO2 reduction process. These insights could guide the new design of dyad photocatalysts with porphyrin photosensitizers.
Collapse
Affiliation(s)
- Teruyuki Honda
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takumi Ehara
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ren Sato
- Graduate School of Sciences, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Tomohiro Ogawa
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Kuramochi
- Graduate School of Sciences, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Akiharu Satake
- Graduate School of Sciences, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kiyoshi Miyata
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ken Onda
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Guo S, Zeng FG, Li XD, Chen KK, Wang P, Lu TB, Zhang ZM. Earth-abundant Zn-dipyrrin chromophores for efficient CO 2 photoreduction. Natl Sci Rev 2024; 11:nwae130. [PMID: 38741716 PMCID: PMC11089819 DOI: 10.1093/nsr/nwae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
The development of strong sensitizing and Earth-abundant antenna molecules is highly desirable for CO2 reduction through artificial photosynthesis. Herein, a library of Zn-dipyrrin complexes (Z-1-Z-6) are rationally designed via precisely controlling their molecular configuration to optimize strong sensitizing Earth-abundant photosensitizers. Upon visible-light excitation, their special geometry enables intramolecular charge transfer to induce a charge-transfer state, which was first demonstrated to accept electrons from electron donors. The resulting long-lived reduced photosensitizer was confirmed to trigger consecutive intermolecular electron transfers for boosting CO2-to-CO conversion. Remarkably, the Earth-abundant catalytic system with Z-6 and Fe-catalyst exhibits outstanding performance with a turnover number of >20 000 and 29.7% quantum yield, representing excellent catalytic performance among the molecular catalytic systems and highly superior to that of noble-metal photosensitizer Ir(ppy)2(bpy)+ under similar conditions. Experimental and theoretical investigations comprehensively unveil the structure-activity relationship, opening up a new horizon for the development of Earth-abundant strong sensitizing chromophores for boosting artificial photosynthesis.
Collapse
Affiliation(s)
- Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Fu-Gui Zeng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiao-Di Li
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kai-Kai Chen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ping Wang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
3
|
Kuramochi Y, Hashimoto M, Satake A. Methane Formation Induced via Face-to-Face Orientation of Cyclic Fe Porphyrin Dimer in Photocatalytic CO 2 Reduction. Molecules 2024; 29:2453. [PMID: 38893329 PMCID: PMC11174001 DOI: 10.3390/molecules29112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Iron porphyrins are known to provide CH4 as an eight-electron reduction product of CO2 in a photochemical reaction. However, there are still some aspects of the reaction mechanism that remain unclear. In this study, we synthesized iron porphyrin dimers and carried out the photochemical CO2 reduction reactions in N,N-dimethylacetamide (DMA) containing a photosensitizer in the presence of 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as an electron donor. We found that, despite a low catalytic turnover number, CH4 was produced only when these porphyrins were facing each other. The close proximity of the cyclic dimers, distinguishing them from a linear Fe porphyrin dimer and monomers, induced multi-electron CO2 reduction, emphasizing the unique role of their structural arrangement in CH4 formation.
Collapse
Affiliation(s)
- Yusuke Kuramochi
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8621, Japan
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8621, Japan
| | - Masaya Hashimoto
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8621, Japan
| | - Akiharu Satake
- Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8621, Japan
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8621, Japan
| |
Collapse
|
4
|
Kuramochi Y, Tanahashi K, Satake A. Synthesis and Photocatalytic CO 2 Reduction of a Cyclic Zinc(II) Porphyrin Trimer with an Encapsulated Rhenium(I) Bipyridine Tricarbonyl Complex. Chemistry 2024; 30:e202303324. [PMID: 38099393 DOI: 10.1002/chem.202303324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 12/30/2023]
Abstract
We previously reported a cyclic Zn(II) porphyrin trimer in which three Zn porphyrins are alternately bridged by three 2,2'-bipyridine (bpy) moieties, enabling the encapsulation of metal complexes within the nanopore formed by the Zn porphyrins. In this study, we introduced a [Re(CO)3 Br] fragment into one of the bpy moieties of the cyclic trimer to form the catalytic Re(4,4'-R2 -bpy)(CO)3 Br center (R=methyl ester). The ester groups (R) play an important role in the synthesis of the cyclic structure. However, it was observed that these ester groups significantly deactivated the photocatalytic CO2 reduction reaction. Therefore, we converted the ester groups with a suitable reducing reagent into hydroxymethyl groups, followed by acetylation to form acetoxymethyl groups. This modification remarkably enhanced the photocatalytic activity of the cyclic trimer=Re complex system for CO2 reduction. Moreover, in the modified system, the presence of the Re complex induced room-temperature phosphorescence of the Zn porphyrin. The phosphorescence was significantly quenched by 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole, indicating that efficient electron transfer mediated by the excited triplet state of the Zn porphyrin occurs during the photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Yusuke Kuramochi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
| | - Kotaro Tanahashi
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
| | - Akiharu Satake
- Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8621, Japan
| |
Collapse
|
5
|
Carr CR, Vrionides MA, Grills DC. Reactivity of radiolytically and photochemically generated tertiary amine radicals towards a CO2 reduction catalyst. J Chem Phys 2023; 159:244503. [PMID: 38146832 DOI: 10.1063/5.0180065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/30/2023] [Indexed: 12/27/2023] Open
Abstract
Homogeneous solar fuels photocatalytic systems often require several additives in solution with the catalyst to operate, such as a photosensitizer (PS), Brønsted acid/base, and a sacrificial electron donor (SED). Tertiary amines, in particular triethylamine (TEA) and triethanolamine (TEOA), are ubiquitously deployed in photocatalysis applications as SEDs and are capable of reductively quenching the PS's excited state. Upon oxidation, TEA and TEOA form TEA•+ and TEOA•+ radical cations, respectively, which decay by proton transfer to generate redox non-innocent transient radicals, TEA• and TEOA•, respectively, with redox potentials that allow them to participate in an additional electron transfer step, thus resulting in net one-photon/two-electron donation. However, the properties of the TEA• and TEOA• radicals are not well understood, including their reducing powers and kinetics of electron transfer to catalysts. Herein, we have used both pulse radiolysis and laser flash photolysis to generate TEA• and TEOA• radicals in CH3CN, and combined with UV/Vis transient absorption and time-resolved mid-infrared spectroscopies, we have probed the kinetics of reduction of the well-established CO2 reduction photocatalyst, fac-ReCl(bpy)(CO)3 (bpy = 2,2'-bipyridine), by these radicals [kTEA• = (4.4 ± 0.3) × 109 M-1 s-1 and kTEOA• = (9.3 ± 0.6) × 107 M-1 s-1]. The ∼50× smaller rate constant for TEOA• indicates, that in contrast to a previous assumption, TEA• is a more potent reductant than TEOA• (by ∼0.2 V, as estimated using the Marcus cross relation). This knowledge will aid in the design of photocatalytic systems involving SEDs. We also show that TEA can be a useful radiolytic solvent radical scavenger for pulse radiolysis experiments in CH3CN, effectively converting unwanted oxidizing radicals into useful reducing equivalents in the form of TEA• radicals.
Collapse
Affiliation(s)
- Cody R Carr
- Chemistry Division, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| | - Michael A Vrionides
- Chemistry Division, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973-5000, USA
| |
Collapse
|