1
|
Dipeptidyl Peptidase-4 Inhibitor-Related Bullous Pemphigoid: Clinical, Laboratory, and Histological Features, and Possible Pathogenesis. Int J Mol Sci 2022; 23:ijms232214101. [PMID: 36430582 PMCID: PMC9692886 DOI: 10.3390/ijms232214101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Dipeptidyl peptidase-4 inhibitor (DPP4i) is a widely used antidiabetic agent. Emerging cases of DPP4i-associated bullous pemphigoid (DBP), whose pathogenesis remains unclear, have been reported. Thus, a retrospective study was conducted from January 2016 to June 2021 to determine the clinical, laboratory, and histopathological features of DBP and idiopathic bullous pemphigoid (IBP). We set up in vitro experiments using vildagliptin-treated HaCaT keratinocytes to validate what we found by analyzing published RNA sequencing data about the genes related to the dermal-epidermal junction. We also observed IL-6 expression by HaCaT cells treated with vildagliptin. We enrolled 20 patients with DBP and 40 patients with IBP. The total Bullous Pemphigoid Disease Area Index (BPDAI) score was similar in both groups. However, the BPDAI score of erosions and blisters in DBP was significantly higher than that in IBP (24.6 vs. 16.68, p = 0.0189), and the score for urticaria and erythema was lower in DBP (12 vs. 19.05, p = 0.0183). The pathological features showed that the mean infiltrating eosinophil number per high-power field was significantly lower in DBP than in IBP (16.7 vs. 27.08, p = 0.023). The expression of LAMA3, LAMB3, LAMC2, DST, and COL17A1 decreased significantly in vildagliptin-treated human keratinocytes. On the other hand, IL-6, the hallmark cytokine of bullous pemphigoid (BP) severity, was found to be upregulated in HaCaT cells by vildagliptin. These experimental findings imply less of a requirement for eosinophil infiltration to drive the inflammatory cascades in DBP blistering. Both immunologic and non-immunologic pathways could be employed for the development of DBP. Our findings may help explain the higher incidence of non-inflammatory BP that was observed in DBP.
Collapse
|
2
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
3
|
Zhang T, Tong X, Zhang S, Wang D, Wang L, Wang Q, Fan H. The Roles of Dipeptidyl Peptidase 4 (DPP4) and DPP4 Inhibitors in Different Lung Diseases: New Evidence. Front Pharmacol 2021; 12:731453. [PMID: 34955820 PMCID: PMC8696080 DOI: 10.3389/fphar.2021.731453] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023] Open
Abstract
CD26/Dipeptidyl peptidase 4 (DPP4) is a type II transmembrane glycoprotein that is widely expressed in various organs and cells. It can also exist in body fluids in a soluble form. DPP4 participates in various physiological and pathological processes by regulating energy metabolism, inflammation, and immune function. DPP4 inhibitors have been approved by the Food and Drug Administration (FDA) for the treatment of type 2 diabetes mellitus. More evidence has shown the role of DPP4 in the pathogenesis of lung diseases, since it is highly expressed in the lung parenchyma and the surface of the epithelium, vascular endothelium, and fibroblasts of human bronchi. It is a potential biomarker and therapeutic target for various lung diseases. During the coronavirus disease-19 (COVID-19) global pandemic, DPP4 was found to be an important marker that may play a significant role in disease progression. Some clinical trials on DPP4 inhibitors in COVID-19 are ongoing. DPP4 also affects other infectious respiratory diseases such as Middle East respiratory syndrome and non-infectious lung diseases such as pulmonary fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), and asthma. This review aims to summarize the roles of DPP4 and its inhibitors in infectious lung diseases and non-infectious diseases to provide new insights for clinical physicians.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Garreto L, Charneau S, Mandacaru SC, Nóbrega OT, Motta FN, de Araújo CN, Tonet AC, Modesto FMB, Paula LM, de Sousa MV, Santana JM, Acevedo AC, Bastos IMD. Mapping Salivary Proteases in Sjögren's Syndrome Patients Reveals Overexpression of Dipeptidyl Peptidase-4/CD26. Front Immunol 2021; 12:686480. [PMID: 34220840 PMCID: PMC8247581 DOI: 10.3389/fimmu.2021.686480] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune exocrinopathy characterized by the progressive damage of salivary and lacrimal glands associated with lymphocytic infiltration. Identifying new non-invasive biomarkers for SS diagnosis remains a challenge, and alterations in saliva composition reported in patients turn this fluid into a source of potential biomarkers. Among these, proteases are promising candidates since they are involved in several key physio-pathological processes. This study evaluated differentially expressed proteases in SS individuals' saliva using synthetic fluorogenic substrates, zymography, ELISA, and proteomic approaches. Here we reported, for the first time, increased activity of the serine protease dipeptidyl peptidase-4/CD26 (DPP4/CD26) in pSS saliva, the expression level of which was corroborated by ELISA assay. Gelatin zymograms showed that metalloproteinase proteolytic band profiles differed significantly in intensity between control and SS groups. Focusing on matrix metalloproteinase-9 (MMP9) expression, an increased tendency in pSS saliva (p = 0.0527) was observed compared to the control group. Samples of control, pSS, and sSS were analyzed by mass spectrometry to reveal a general panorama of proteases in saliva. Forty-eight protein groups of proteases were identified, among which were the serine proteases cathepsin G (CTSG), neutrophil elastase (ELANE), myeloblastin (PRTN3), MMP9 and several protease inhibitors. This work paves the way for proteases to be explored in the future as biomarkers, emphasizing DPP4 by its association in several autoimmune and inflammatory diseases. Besides its proteolytic role, DPP4/CD26 acts as a cell surface receptor, signal transduction mediator, adhesion and costimulatory protein involved in T lymphocytes activation.
Collapse
Affiliation(s)
- Laís Garreto
- Pathogen–Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Samuel Coelho Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | | | - Flávia N. Motta
- Pathogen–Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
- Faculty of Ceilândia, University of Brasília, Brasília, Brazil
| | - Carla N. de Araújo
- Pathogen–Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
- Faculty of Ceilândia, University of Brasília, Brasília, Brazil
| | - Audrey C. Tonet
- Laboratory of Immune Gerontology, Catholic University of Brasília, Brasília, Brazil
| | | | - Lilian M. Paula
- Laboratory of Oral Histopathology, Department of Odontology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Jaime M. Santana
- Pathogen–Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| | - Ana Carolina Acevedo
- Laboratory of Oral Histopathology, Department of Odontology, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Izabela M. D. Bastos
- Pathogen–Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, Brazil
| |
Collapse
|
5
|
Patel PM, Jones VA, Kridin K, Amber KT. The role of Dipeptidyl Peptidase-4 in cutaneous disease. Exp Dermatol 2020; 30:304-318. [PMID: 33131073 DOI: 10.1111/exd.14228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/21/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Dipeptidyl peptidase-4 (DPP4) is a multifunctional, transmembrane glycoprotein present on the cell surface of various tissues. It is present in multiple molecular forms including cell surface and soluble. The role of DPP4 and its inhibition in cutaneous dermatoses have been a recent point of investigation. DPP4 exerts a notable influence on T-cell biology, the induction of skin-specific lymphocytes, and the homeostasis between regulatory and effector T cells. Moreover, DPP4 interacts with a broad range of molecules, including adenosine deaminase, caveolin-1, CXCR4 receptor, M6P/insulin-like growth factor II-receptor and fibroblast activation protein-α, triggering downstream effects that modulate the immune response, cell adhesion and chemokine activity. DPP4 expression on melanocytes, keratinocytes and fibroblasts further alters cell function and, thus, has crucial implications in cutaneous pathology. As a result, DPP4 plays a significant role in bullous pemphigoid, T helper type 1-like reactions, cutaneous lymphoma, melanoma, wound healing and fibrotic disorders. This review illustrates the multifactorial role of DPP4 expression, regulation, and inhibition in cutaneous diseases.
Collapse
Affiliation(s)
- Payal M Patel
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Virginia A Jones
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Khalaf Kridin
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Kyle T Amber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Wen Z, Liu Q, Wu J, Xu B, Wang J, Liang L, Guo Y, Peng M, Zhao Y, Liao Q. Fibroblast activation protein α-positive pancreatic stellate cells promote the migration and invasion of pancreatic cancer by CXCL1-mediated Akt phosphorylation. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:532. [PMID: 31807514 DOI: 10.21037/atm.2019.09.164] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Pancreatic stellate cells (PSCs) is a highly heterogeneic stroma cell population in pancreatic cancer tissue. Interaction between PSCs and pancreatic cancer cells has not been well elucidated. This research was aimed to study the relationship between fibroblast activation protein α (FAPα)-positive (FAPα+) PSCs and the pathological features and prognosis of pancreatic cancer. The effects and mechanisms of FAPα + PSCs in pancreatic cancer were also explored. Methods Tissue microarray analysis was used to detect FAPα expression in tumor and adjacent tissues. The relationship between FAPα expression and pancreatic pathological features and prognosis were analyzed. The effects of FAPα+ PSCs on the proliferation, migration and invasion of pancreatic cancer were detected in vitro and in vivo. A cytokine chip was used to detect the differential expression of cytokines in FAPα-positive (FAPα+) and FAPα-negative (FAPα-) PSCs. Phosphorylated tyrosine kinase receptors were detected by a human phosphotyrosine kinase receptor protein chip. The interaction between differential cytokine and tyrosine kinase receptors was detected by immunoprecipitation. Results Compared with the adjacent tissues, pancreatic cancer stromal tissues showed high FAPα expression. FAPα was mainly expressed in the PSCs. FAPα+ PSCs were associated with lymph node metastasis. Higher numbers of FAPα+ PSCs predicted shorter survival. Pancreatic cancer cells released TGFβ1 and induced PSCs to express FAPα. FAPα+ PSCs released the chemokine CXCL1 and promoted the phosphorylation of the tyrosine kinase receptors EphB1 and EphB3 in pancreatic cancer cells. CXCL1, EphrinB1, and EphrinB3 worked together to promote the migration and invasion of pancreatic cancer cells by Akt phosphorylation. Talabostat (PT100), an FAPα inhibitor, inhibited the roles of FAPα+ PSCs. Conclusions FAPα+ PSCs can promote the migration, invasion, and metastasis of pancreatic cancer by the Akt signaling pathway. This interaction of FAPα+ PSCs with pancreatic cancer cells may become a new strategy for the comprehensive treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhang Wen
- Department of Hepatobiliary Surgery and Liver Transplantation, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.,Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qiaofei Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jihua Wu
- Department of Hepatobiliary Surgery and Liver Transplantation, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Banghao Xu
- Department of Hepatobiliary Surgery and Liver Transplantation, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jilong Wang
- Department of Hepatobiliary Surgery and Liver Transplantation, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Lizhou Liang
- Department of Hepatobiliary Surgery and Liver Transplantation, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ya Guo
- Department of Hepatobiliary Surgery and Liver Transplantation, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Minhao Peng
- Department of Hepatobiliary Surgery and Liver Transplantation, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
7
|
Nieto-Fontarigo JJ, González-Barcala FJ, San José E, Arias P, Nogueira M, Salgado FJ. CD26 and Asthma: a Comprehensive Review. Clin Rev Allergy Immunol 2019; 56:139-160. [PMID: 27561663 PMCID: PMC7090975 DOI: 10.1007/s12016-016-8578-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asthma is a heterogeneous and chronic inflammatory family of disorders of the airways with increasing prevalence that results in recurrent and reversible bronchial obstruction and expiratory airflow limitation. These diseases arise from the interaction between environmental and genetic factors, which collaborate to cause increased susceptibility and severity. Many asthma susceptibility genes are linked to the immune system or encode enzymes like metalloproteases (e.g., ADAM-33) or serine proteases. The S9 family of serine proteases (prolyl oligopeptidases) is capable to process peptide bonds adjacent to proline, a kind of cleavage-resistant peptide bonds present in many growth factors, chemokines or cytokines that are important for asthma. Curiously, two serine proteases within the S9 family encoded by genes located on chromosome 2 appear to have a role in asthma: CD26/dipeptidyl peptidase 4 (DPP4) and DPP10. The aim of this review is to summarize the current knowledge about CD26 and to provide a structured overview of the numerous functions and implications that this versatile enzyme could have in this disease, especially after the detection of some secondary effects (e.g., viral nasopharyngitis) in type II diabetes mellitus patients (a subset with a certain risk of developing obesity-related asthma) upon CD26 inhibitory therapy.
Collapse
Affiliation(s)
- Juan J Nieto-Fontarigo
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Francisco J González-Barcala
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Respiratory Department, Clinic University Hospital (CHUS), Santiago de Compostela, Spain
| | - Esther San José
- Clinical Analysis Service, Clinic University Hospital (CHUS), Santiago de Compostela, Spain
| | - Pilar Arias
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Montserrat Nogueira
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Francisco J Salgado
- Department of Biochemistry and Molecular Biology, Faculty of Biology-Biological Research Centre (CIBUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Ali A, Fuentes A, Skelton WP, Wang Y, McGorray S, Shah C, Bishnoi R, Dang LH, Dang NH. A multi-center retrospective analysis of the effect of DPP4 inhibitors on progression-free survival in advanced airway and colorectal cancers. Mol Clin Oncol 2018; 10:118-124. [PMID: 30655986 DOI: 10.3892/mco.2018.1766] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
Cluster of differentiation 26 (CD26), also known as dipeptidyl peptidase IV (DPP4), is a cell surface protein with exopeptidase activity and is expressed by most cell types. CD26/DPP4 is a multifunctional molecule with diverse biological effects, including regulatory effects on tumor growth, invasion and metastasis, and is a potential novel therapeutic target for selected cancers. In this study, we retrospectively analyzed diabetic patients with concurrent advanced airway or colorectal cancer to examine the effect of DPP4-inhibitors on progression-free survival (PFS). We performed a multi-center retrospective review of patients with advanced colorectal or airway (lung, head and neck) cancer and a concurrent diagnosis of diabetes. The control group included patients on metformin and a sulfonylurea, and the study group included patients on metformin and a DPP4 inhibitor. Ninety-six patients were eligible for the study. The cancers progressed in 23.7% of patients treated with DPP4 inhibitors compared to 50.9% of patients in the control group with an odds ratio of 0.303 [95% confidence interval (CI): 0.106-0.809] and P=0.010. There was a statistically significant improvement in PFS in the study group as compared to the control group, hazard ratio=0.42 (95% CI: 0.21-0.84) and P=0.014. There was a trend toward improvement in overall survival, although this effect was not statistically significant (P=0.11). Exposure to DPP4 inhibitors in the study group led to higher PFS in patients with advanced colorectal and airway cancers. Additional investigations with larger patient cohorts are needed to validate the relationship between DPP4 inhibition and the clinical outcome of selected malignancies.
Collapse
Affiliation(s)
- Azka Ali
- Department of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Alejandra Fuentes
- Department of Medicine, Section of Hematology and Oncology, Louisiana State University, New Orleans, LA 70112, USA
| | | | - Yu Wang
- Department of Biostatistics, University of Florida, Gainesville, FL 32608, USA
| | - Susan McGorray
- Department of Biostatistics, University of Florida, Gainesville, FL 32608, USA
| | - Chintan Shah
- Department of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Rohit Bishnoi
- Department of Medicine, University of Florida, Gainesville, FL 32608, USA
| | - Long H Dang
- Department of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL 32608, USA
| | - Nam H Dang
- Department of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
9
|
Beckenkamp A, Willig JB, Santana DB, Nascimento J, Paccez JD, Zerbini LF, Bruno AN, Pilger DA, Wink MR, Buffon A. Differential Expression and Enzymatic Activity of DPPIV/CD26 Affects Migration Ability of Cervical Carcinoma Cells. PLoS One 2015. [PMID: 26222679 PMCID: PMC4519168 DOI: 10.1371/journal.pone.0134305] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dipeptidyl peptidase IV (DPPIV/CD26) is a transmembrane glycoprotein that inactivates or degrades some bioactive peptides and chemokines. For this reason, it regulates cell proliferation, migration and adhesion, showing its role in cancer processes. This enzyme is found mainly anchored onto the cell membrane, although it also has a soluble form, an enzymatically active isoform. In the present study, we investigated DPPIV/CD26 activity and expression in cervical cancer cell lines (SiHa, HeLa and C33A) and non-tumorigenic HaCaT cells. The effect of the DPPIV/CD26 inhibitor (sitagliptin phosphate) on cell migration and adhesion was also evaluated. Cervical cancer cells and keratinocytes exhibited DPPIV/CD26 enzymatic activity both membrane-bound and in soluble form. DPPIV/CD26 expression was observed in HaCaT, SiHa and C33A, while in HeLa cells it was almost undetectable. We observed higher migratory capacity of HeLa, when compared to SiHa. But in the presence of sitagliptin SiHa showed an increase in migration, indicating that, at least in part, cell migration is regulated by DPPIV/CD26 activity. Furthermore, in the presence of sitagliptin phosphate, SiHa and HeLa cells exhibited a significant reduction in adhesion. However this mechanism seems to be mediated independent of DPPIV/CD26. This study demonstrates, for the first time, the activity and expression of DPPIV/CD26 in cervical cancer cells and the effect of sitagliptin phosphate on cell migration and adhesion.
Collapse
Affiliation(s)
- Aline Beckenkamp
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Júlia Biz Willig
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Danielle Bertodo Santana
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jéssica Nascimento
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Juliano Domiraci Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cancer Genomics Group, Cape Town, South Africa
| | | | - Diogo André Pilger
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Laboratory of Cell Biology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | - Andréia Buffon
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
10
|
Sakamoto S, Tanaka H, Morimoto S. Towards the prophylactic and therapeutic use of human neutralizing monoclonal antibodies for Middle East respiratory syndrome coronavirus (MERS-CoV). ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:35. [PMID: 25815296 DOI: 10.3978/j.issn.2305-5839.2015.01.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 12/30/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Seiichi Sakamoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Tanaka
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoshi Morimoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
11
|
Yip HK, Sun CK, Tsai TH, Sheu JJ, Kao YH, Lin YC, Shiue YL, Chen YL, Chai HT, Chua S, Ko SF, Leu S. Tissue plasminogen activator enhances mobilization of endothelial progenitor cells and angiogenesis in murine limb ischemia. Int J Cardiol 2013; 168:226-36. [DOI: 10.1016/j.ijcard.2012.09.090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/22/2012] [Accepted: 09/15/2012] [Indexed: 01/09/2023]
|
12
|
Shin EF, Vodolazhsky DI, Golikov AY, Belova TN, Boyko NV, Zimakov DV, Cherkasova EN, Kogan MI, Chibichian MB, Moshkovskii SA, Tarasov VA, Matishov DG. Separation and study of the range of plasminogen isoforms in patients with prostate cancer. BIOCHEMISTRY (MOSCOW) 2012; 77:1065-71. [DOI: 10.1134/s0006297912090143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Zhao S, Song M, Fan Y, Chang Q, Yi W, Li P, Hu C. Elevation of plasma soluble CD26 levels during pregnancy. J Obstet Gynaecol Res 2011; 38:272-9. [DOI: 10.1111/j.1447-0756.2011.01638.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Yu DMT, Yao TW, Chowdhury S, Nadvi NA, Osborne B, Church WB, McCaughan GW, Gorrell MD. The dipeptidyl peptidase IV family in cancer and cell biology. FEBS J 2010; 277:1126-44. [PMID: 20074209 DOI: 10.1111/j.1742-4658.2009.07526.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Of the 600+ known proteases identified to date in mammals, a significant percentage is involved or implicated in pathogenic and cancer processes. The dipeptidyl peptidase IV (DPIV) gene family, comprising four enzyme members [DPIV (EC 3.4.14.5), fibroblast activation protein, DP8 and DP9] and two nonenzyme members [DP6 (DPL1) and DP10 (DPL2)], are interesting in this regard because of their multiple diverse functions, varying patterns of distribution/localization and subtle, but significant, differences in structure/substrate recognition. In addition, their engagement in cell biological processes involves both enzymatic and nonenzymatic capabilities. This article examines, in detail, our current understanding of the biological involvement of this unique enzyme family and their overall potential as therapeutic targets.
Collapse
Affiliation(s)
- Denise M T Yu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Havre PA, Abe M, Urasaki Y, Ohnuma K, Morimoto C, Dang NH. CD26 expression on T cell lines increases SDF-1-alpha-mediated invasion. Br J Cancer 2009; 101:983-91. [PMID: 19654580 PMCID: PMC2743358 DOI: 10.1038/sj.bjc.6605236] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND CD26 is a multifunctional membrane-bound glycoprotein that regulates tumour growth in addition to its other activities. Because disease aggressiveness is correlated with CD26 expression in several T-cell malignancies, we decided to investigate the invasiveness of cells expressing different levels of CD26. METHODS To assess CD26 involvement in cell invasion, we performed in vitro invasion assays with human T cell lines expressing different levels of CD26. These included the parental CD26-positive T-lymphoblast cell line HSB-2 and clones infected with a retrovirus expressing siRNA vectors that either targeted CD26 or encoded a missense siRNA, and the parental CD26-negative T-leukaemia cell line Jurkat and clones expressing CD26. CD26 expression in these cell lines was evaluated by flow cytometry and western immunoblotting. CXCR4 expression, phosphorylation of signalling kinases, and MMP-9 secretion were also evaluated by western immunoblotting, whereas MMP-9 activity and the effect of kinase and CD45 inhibitors on activity were measured by zymography of conditioned media. RESULTS The presence of CD26 enhanced stromal-cell-derived factor-1-alpha (SDF-1-alpha)-mediated invasion of T cell lines. This process was regulated in part by the PI-3K and MEK1 pathways, as indicated by increased phosphorylation of p44/42 MAP kinase and Akt in the presence of SDF-1-alpha and the effect of their respective inhibitors on MMP-9 secretion and in vitro invasion. In addition, CD26-associated enhancement of SDF-1-alpha-induced invasion was decreased when CD45 was inhibited. CONCLUSIONS Our results indicate that the expression of CD26 in T cell lines leads to increased SDF-1-alpha-mediated invasion in an in vitro system and that this is controlled in part by the PI-3K and MEK1 pathways. The data also suggest that CD26 enhancement of invasion may be mediated by CD45, however, more studies are required to confirm this involvement.
Collapse
Affiliation(s)
- P A Havre
- Division of Hematology/Oncology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
16
|
Sun YX, Pedersen EA, Shiozawa Y, Havens AM, Jung Y, Wang J, Pienta KJ, Taichman RS. CD26/dipeptidyl peptidase IV regulates prostate cancer metastasis by degrading SDF-1/CXCL12. Clin Exp Metastasis 2008; 25:765-76. [PMID: 18563594 DOI: 10.1007/s10585-008-9188-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 06/03/2008] [Indexed: 12/31/2022]
Abstract
Stromal derived factor-1 (SDF-1 or CXCL12) expressed by osteoblasts and endothelial cells, and its receptors CXCR4 and CXCR7/RDC1 are key molecular determinants in prostate cancer (PCa) metastasis. What drives PCa cells into the extravascular marrow space(s) once they make contact with the blood vessel endothelium, however remains unclear. Here, we evaluated whether degradation of CXCL12 facilitates PCa cell entry into the marrow cavity by locally lowering CXCL12 levels intravascularly. To explore this possibility, co-cultured conditioned media from PCa cells and endothelial cells were evaluated for their ability to degrade biotinylated CXCL12 (bCXCL12). Co-culture of PCa cells/endothelial cells resulted in greater digestion of CXCL12 than was achieved by either cell type alone, and this activity regulated invasion in vitro. The ability to degrade CXCL12 was not however observed in PCa and osteoblasts co-cultures. Fractionation and inhibitor studies suggested that the activity was CD26/dipeptidyl peptidase IV (DPPIV) and possibly other cysteine/serine proteases. By inhibiting CD26/DPPIV, invasion and metastasis of PCa cell lines were enhanced in in vitro and in vivo metastasis assays. Together, these data suggest that the degradation of CXCL12 by CD26/DPPIV may be involved in the metastatic cascades of PCa, and suggests that inhibition of CD26/DPPIV may be a trigger of PCa metastasis.
Collapse
Affiliation(s)
- Yan-Xi Sun
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Room 3307, 1011 North University Avenue, Ann Arbor, MI 48109-1078, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sulda ML, Abbott CA, Hildebrandt M. DPIV/CD26 and FAP in cancer: a tale of contradictions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 575:197-206. [PMID: 16700523 DOI: 10.1007/0-387-32824-6_21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Melanie L Sulda
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | | | | |
Collapse
|
18
|
Busek P, Malík R, Sedo A. Dipeptidyl peptidase IV activity and/or structure homologues (DASH) and their substrates in cancer. Int J Biochem Cell Biol 2004; 36:408-21. [PMID: 14687920 DOI: 10.1016/s1357-2725(03)00262-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Post-translational modification of proteins is an important regulatory event. Numerous biologically active peptides that play an essential role in cancerogenesis contain an evolutionary conserved proline residue as a proteolytic-processing regulatory element. Proline-specific proteases could therefore be viewed as important "check-points". Limited proteolysis of such peptides may lead to quantitative but, importantly, due to the change of receptor preference, also qualitative changes of their signaling potential. Dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5, identical with CD26) was for many years believed to be a unique cell membrane protease cleaving X-Pro dipeptides from the N-terminal end of peptides and proteins. Subsequently, a number of other molecules were discovered, exhibiting various degree of structural homology and DPP-IV-like enzyme activity, capable of cleaving similar set of substrates. These comprise for example, seprase, fibroblast activation protein alpha, DPP6, DPP8, DPP9, attractin, N-acetylated-alpha-linked-acidic dipeptidases I, II and L, quiescent cell proline dipeptidase, thymus-specific serine protease and DPP IV-beta. It is tempting to speculate their potential participation on DPP-IV biological function(s). Disrupted expression and enzymatic activity of "DPP-IV activity and/or structure homologues" (DASH) might corrupt the message carried by their substrates, promoting abnormal cell behavior. Consequently, modulation of particular enzyme activity using e.g. DASH inhibitors, specific antibodies or DASH expression modification may be an attractive therapeutic concept in cancer treatment. This review summarizes recent information on the interactions between DASH members and their substrates with respect to their possible role in cancer biology.
Collapse
Affiliation(s)
- Petr Busek
- Laboratory of Cancer Cell Biology, First Faculty of Medicine, Institute of Biochemistry and Experimental Oncology, Charles University, 128 53 Prague 2, Czech Republic
| | | | | |
Collapse
|
19
|
Abstract
Originally discovered in 1994 by Folkman and coworkers, angiostatin was identified through its antitumor effects in mice and later shown to be a potent inhibitor of angiogenesis. An internal fragment of plasminogen, angiostatin consists of kringle domains that are known to be lysine-binding. The crystal structure of angiostatin was the first multikringle domain-containing structure to be published. This review will focus on what is known about the structure of angiostatin and its implications in function from the current literature.
Collapse
Affiliation(s)
- J H Geiger
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
20
|
Moser TL, Kenan DJ, Ashley TA, Roy JA, Goodman MD, Misra UK, Cheek DJ, Pizzo SV. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci U S A 2001; 98:6656-61. [PMID: 11381144 PMCID: PMC34409 DOI: 10.1073/pnas.131067798] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2001] [Indexed: 12/22/2022] Open
Abstract
Angiostatin blocks tumor angiogenesis in vivo, almost certainly through its demonstrated ability to block endothelial cell migration and proliferation. Although the mechanism of angiostatin action remains unknown, identification of F(1)-F(O) ATP synthase as the major angiostatin-binding site on the endothelial cell surface suggests that ATP metabolism may play a role in the angiostatin response. Previous studies noting the presence of F(1) ATP synthase subunits on endothelial cells and certain cancer cells did not determine whether this enzyme was functional in ATP synthesis. We now demonstrate that all components of the F(1) ATP synthase catalytic core are present on the endothelial cell surface, where they colocalize into discrete punctate structures. The surface-associated enzyme is active in ATP synthesis as shown by dual-label TLC and bioluminescence assays. Both ATP synthase and ATPase activities of the enzyme are inhibited by angiostatin as well as by antibodies directed against the alpha- and beta-subunits of ATP synthase in cell-based and biochemical assays. Our data suggest that angiostatin inhibits vascularization by suppression of endothelial-surface ATP metabolism, which, in turn, may regulate vascular physiology by established mechanisms. We now have shown that antibodies directed against subunits of ATP synthase exhibit endothelial cell-inhibitory activities comparable to that of angiostatin, indicating that these antibodies function as angiostatin mimetics.
Collapse
Affiliation(s)
- T L Moser
- Department of Pathology and Duke University School of Nursing, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|