1
|
Tey PY, Dufner A, Knobeloch KP, Pruneda JN, Clague MJ, Urbé S. Rapid turnover of CTLA4 is associated with a complex architecture of reversible ubiquitylation. J Cell Biol 2025; 224:e202312141. [PMID: 39404738 PMCID: PMC11486831 DOI: 10.1083/jcb.202312141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/14/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The immune checkpoint regulator CTLA4 is an unusually short-lived membrane protein. Here, we show that its lysosomal degradation is dependent on ubiquitylation at lysine residues 203 and 213. Inhibition of the v-ATPase partially restores CTLA4 levels following cycloheximide treatment, but also reveals a fraction that is secreted in exosomes. The endosomal deubiquitylase, USP8, interacts with CTLA4, and its loss enhances CTLA4 ubiquitylation in cancer cells, mouse CD4+ T cells, and cancer cell-derived exosomes. Depletion of the USP8 adapter protein, HD-PTP, but not ESCRT-0 recapitulates this cellular phenotype but shows distinct properties vis-à-vis exosome incorporation. Re-expression of wild-type USP8, but neither a catalytically inactive nor a localization-compromised ΔMIT domain mutant can rescue delayed degradation of CTLA4 or counteract its accumulation in clustered endosomes. UbiCRest analysis of CTLA4-associated ubiquitin chain linkages identifies a complex mixture of conventional Lys63- and more unusual Lys27- and Lys29-linked polyubiquitin chains that may underly the rapidity of protein turnover.
Collapse
Affiliation(s)
- Pei Yee Tey
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Almut Dufner
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, USA
| | - Michael J. Clague
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sylvie Urbé
- Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Endocytic Adaptor Proteins in Health and Disease: Lessons from Model Organisms and Human Mutations. Cells 2019; 8:cells8111345. [PMID: 31671891 PMCID: PMC6912373 DOI: 10.3390/cells8111345] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
Cells need to exchange material and information with their environment. This is largely achieved via cell-surface receptors which mediate processes ranging from nutrient uptake to signaling responses. Consequently, their surface levels have to be dynamically controlled. Endocytosis constitutes a powerful mechanism to regulate the surface proteome and to recycle vesicular transmembrane proteins that strand at the plasma membrane after exocytosis. For efficient internalization, the cargo proteins need to be linked to the endocytic machinery via adaptor proteins such as the heterotetrameric endocytic adaptor complex AP-2 and a variety of mostly monomeric endocytic adaptors. In line with the importance of endocytosis for nutrient uptake, cell signaling and neurotransmission, animal models and human mutations have revealed that defects in these adaptors are associated with several diseases ranging from metabolic disorders to encephalopathies. This review will discuss the physiological functions of the so far known adaptor proteins and will provide a comprehensive overview of their links to human diseases.
Collapse
|
3
|
Śledzińska A, Menger L, Bergerhoff K, Peggs KS, Quezada SA. Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol 2015; 9:1936-65. [PMID: 26578451 DOI: 10.1016/j.molonc.2015.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023] Open
Abstract
The term 'inhibitory checkpoint' refers to the broad spectrum of co-receptors expressed by T cells that negatively regulate T cell activation thus playing a crucial role in maintaining peripheral self-tolerance. Co-inhibitory receptor ligands are highly expressed by a variety of malignancies allowing evasion of anti-tumour immunity. Recent studies demonstrate that manipulation of these co-inhibitory pathways can remove the immunological brakes that impede endogenous immune responses against tumours. Antibodies that block the interactions between co-inhibitory receptors and their ligands have delivered very promising clinical responses, as has been shown by recent successful trials targeting the CTLA-4 and PD-1 pathways. In this review, we discuss the mechanisms of action and expression pattern of co-inhibitory receptors on different T cells subsets, emphasising differences between CD4(+) and CD8(+) T cells. We also summarise recent clinical findings utilising immune checkpoint blockade.
Collapse
Affiliation(s)
- Anna Śledzińska
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | - Laurie Menger
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | | | - Karl S Peggs
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK.
| | | |
Collapse
|
4
|
Qureshi OS, Kaur S, Hou TZ, Jeffery LE, Poulter NS, Briggs Z, Kenefeck R, Willox AK, Royle SJ, Rappoport JZ, Sansom DM. Constitutive clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J Biol Chem 2012; 287:9429-40. [PMID: 22262842 PMCID: PMC3308817 DOI: 10.1074/jbc.m111.304329] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CTLA-4 is one of the most important negative regulators of the T cell immune response. However, the subcellular distribution of CTLA-4 is unusual for a receptor that interacts with cell surface transmembrane ligands in that CTLA-4 is rapidly internalized from the plasma membrane. It has been proposed that T cell activation can lead to stabilization of CTLA-4 expression at the cell surface. Here we have analyzed in detail the internalization, recycling, and degradation of CTLA-4. We demonstrate that CTLA-4 is rapidly internalized from the plasma membrane in a clathrin- and dynamin-dependent manner driven by the well characterized YVKM trafficking motif. Furthermore, we show that once internalized, CTLA-4 co-localizes with markers of recycling endosomes and is recycled to the plasma membrane. Although we observed limited co-localization of CTLA-4 with lysosomal markers, CTLA-4 was nonetheless degraded in a manner inhibited by lysosomal blockade. T cell activation stimulated mobilization of CTLA-4, as judged by an increase in cell surface expression; however, this pool of CTLA-4 continued to endocytose and was not stably retained at the cell surface. These data support a model of trafficking whereby CTLA-4 is constitutively internalized in a ligand-independent manner undergoing both recycling and degradation. Stimulation of T cells increases CTLA-4 turnover at the plasma membrane; however, CTLA-4 endocytosis continues and is not stabilized during activation of human T cells. These findings emphasize the importance of clathrin-mediated endocytosis in regulating CTLA-4 trafficking throughout T cell activation.
Collapse
Affiliation(s)
- Omar S Qureshi
- MRC Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kelly BT, Owen DJ. Endocytic sorting of transmembrane protein cargo. Curr Opin Cell Biol 2011; 23:404-12. [DOI: 10.1016/j.ceb.2011.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/03/2011] [Indexed: 01/26/2023]
|
6
|
Bulwin GC, Heinemann T, Bugge V, Winter M, Lohan A, Schlawinsky M, Schulze A, Wälter S, Sabat R, Schülein R, Wiesner B, Veh RW, Löhler J, Blumberg RS, Volk HD, Utku N. TIRC7 inhibits T cell proliferation by modulation of CTLA-4 expression. THE JOURNAL OF IMMUNOLOGY 2007; 177:6833-41. [PMID: 17082597 DOI: 10.4049/jimmunol.177.10.6833] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ab targeting of TIRC7 has been shown previously to inhibit T cell proliferation and Th1 lymphocyte-associated cytokine production. In this study, we demonstrate that Ab targeting of TIRC7 induces early cell surface expression of CTLA-4. The majority of stimulated CD4+ and CD8+ human T cells coexpress CTLA-4 and TIRC7. Similar to CTLA-4, TIRC7 rapidly accumulates at the site of Ag adhesion upon T cell activation. TIRC7 seems to colocalize with CTLA-4 in human T cells, and both molecules are associated with clathrin-coated vesicles, indicating they share intracellular transport systems. Moreover, Ab targeting of TIRC7 results in an early activation of CTLA-4 transcription. The inhibition of cell proliferation mediated by TIRC7 is dependent on CTLA-4 expression because the TIRC7-mediated inhibitory effects on cell proliferation and cytokine expression are abolished by Ab blockade of CTLA-4. Splenocytes obtained from CTLA-4-deficient mice are not responsive to TIRC7 Ab targeting. Thus, TIRC7 acts as an upstream regulatory molecule of CTLA-4 expression.
Collapse
Affiliation(s)
- Grit-Carsta Bulwin
- Institut für Medizinische Immunologie, Campus Charité Mitte, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Clathrin-coated vesicles (CCVs) are responsible for the transport of proteins between various compartments of the secretory and endocytic systems. Clathrin forms a scaffold around these vesicles that is linked to membranes by clathrin adaptors. The adaptors simultaneously bind to clathrin and to transmembrane proteins and/or phospholipids and can also interact with each other and with other components of the CCV formation machinery. The result is a collection of proteins that can make multiple, moderate strength (microM Kd) interactions and thereby establish the dynamic regulatable networks to drive vesicle genesis at the correct time and place in the cell. This review focuses on the structure of clathrin adaptors and how these structures provide functional information on the mechanism of CCV formation.
Collapse
Affiliation(s)
- David J Owen
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge CB2 2XY, UK.
| | | | | |
Collapse
|
8
|
Lewis G, Taylor IW, Nienow AW, Hewitt CJ. The application of multi-parameter flow cytometry to the study of recombinant Escherichia coli batch fermentation processes. J Ind Microbiol Biotechnol 2004; 31:311-22. [PMID: 15249970 DOI: 10.1007/s10295-004-0151-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
Multi-parameter flow cytometric techniques coupled with dual colour fluorescent staining were used to study the physical and metabolic consequences of inclusion body formation in batch cultures of the recombinant Escherichia coli strain MSD3735. This strain contains a plasmid coding for the isopropylthiogalactopyranoside-inducible model eukaryotic protein AP50. It is known that the synthesis of foreign proteins at high concentrations can exert a severe metabolic stress on the host cell and that morphological changes can occur. In this work, using various points of induction, it was shown that inclusion body formation is followed immediately by measurable changes in the characteristic intrinsic light scatter patterns for the individual cell (forward scatter, 90 degrees side scatter) and a concomitant progressive change in the individual cell physiological state with respect to both cytoplasmic membrane polarisation and permeability. This work establishes flow cytometry as a potentially valuable tool for monitoring recombinant fermentation processes, providing important information for scale-up. Further, we discuss the possibility of optimising inclusion body formation by manipulating the fermentation conditions based on these rapid "real-time" measurements.
Collapse
Affiliation(s)
- Gareth Lewis
- School of Engineering (Chemical Engineering), The University of Birmingham, B15 2TT, Edgbaston, UK
| | | | | | | |
Collapse
|