1
|
Sun Y, Cao D, Pillai JJ, Paez A, Li Y, Gu C, Pogson JM, Knutsson L, Barker PB, van Zijl PCM, Bakker A, Ward BK, Hua J. Rapid imaging of intravenous gadolinium-based contrast agent (GBCA) entering ventricular cerebrospinal fluid (CSF) through the choroid plexus in healthy human subjects. Fluids Barriers CNS 2024; 21:72. [PMID: 39285434 PMCID: PMC11403782 DOI: 10.1186/s12987-024-00571-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/19/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Pathways for intravenously administered gadolinium-based-contrast-agents (GBCAs) entering cerebrospinal-fluid (CSF) circulation in the human brain are not well-understood. The blood-CSF-barrier (BCSFB) in choroid-plexus (CP) has long been hypothesized to be a main entry-point for intravenous-GBCAs into CSF. Most existing studies on this topic were performed in animals and human patients with various diseases. Results in healthy human subjects are limited. Besides, most studies were performed using MRI methods with limited temporal resolution and significant partial-volume effects from blood and CSF. METHODS This study employs the recently developed dynamic-susceptibility-contrast-in-the-CSF (cDSC) MRI approach to measure GBCA-distribution in the CSF immediately and 4 h after intravenous-GBCA administration in healthy subjects. With a temporal resolution of 10 s, cDSC MRI can track GBCA-induced CSF signal changes during the bolus phase, which has not been investigated previously. It employs a long echo-time (TE = 1347 ms) to suppress tissue and blood signals so that pure CSF signal is detected with minimal partial-volume effects. GBCA concentration in the CSF can be estimated from cDSC MRI. In this study, cDSC and FLAIR MRI were performed immediately and 4 h after intravenous GBCA administration in 25 healthy volunteers (age 48.9 ± 19.5 years; 14 females). Paired t-tests were used to compare pre-GBCA and post-GBCA signal changes, and their correlations with age were evaluated using Pearson-correlation-coefficients. RESULTS At ~ 20 s post-GBCA, GBCA-induced cDSC signal changes were detected in the CSF around CP (ΔS/S = - 2.40 ± 0.30%; P < .001) but not in the rest of lateral ventricle (LV). At 4 h, significant GBCA-induced cDSC signal changes were observed in the entire LV (ΔS/S = - 7.58 ± 3.90%; P = .002). FLAIR MRI showed a similar trend. GBCA-induced CSF signal changes did not correlate with age. CONCLUSIONS These results provided direct imaging evidence that GBCAs can pass the BCSFB in the CP and enter ventricular CSF immediately after intravenous administration in healthy human brains. Besides, our results in healthy subjects established a basis for clinical studies in brain diseases exploiting GBCA-enhanced MRI to detect BCSFB dysfunction.
Collapse
Affiliation(s)
- Yuanqi Sun
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD, 21205, USA
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Di Cao
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD, 21205, USA
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jay J Pillai
- Division of Neuroradiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrian Paez
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD, 21205, USA
| | - Yinghao Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD, 21205, USA
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chunming Gu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD, 21205, USA
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jacob M Pogson
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Knutsson
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter B Barker
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD, 21205, USA
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C M van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD, 21205, USA
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arnold Bakker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bryan K Ward
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Hua
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway, Baltimore, MD, 21205, USA.
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Silva RV, Morr AS, Herthum H, Koch SP, Mueller S, Batzdorf CS, Bertalan G, Meyer T, Tzschätzsch H, Kühl AA, Boehm-Sturm P, Braun J, Scheel M, Paul F, Infante-Duarte C, Sack I. Cortical matrix remodeling as a hallmark of relapsing-remitting neuroinflammation in MR elastography and quantitative MRI. Acta Neuropathol 2024; 147:8. [PMID: 38175305 PMCID: PMC10766667 DOI: 10.1007/s00401-023-02658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease that involves both white and gray matter. Although gray matter damage is a major contributor to disability in MS patients, conventional clinical magnetic resonance imaging (MRI) fails to accurately detect gray matter pathology and establish a clear correlation with clinical symptoms. Using magnetic resonance elastography (MRE), we previously reported global brain softening in MS and experimental autoimmune encephalomyelitis (EAE). However, it needs to be established if changes of the spatiotemporal patterns of brain tissue mechanics constitute a marker of neuroinflammation. Here, we use advanced multifrequency MRE with tomoelastography postprocessing to investigate longitudinal and regional inflammation-induced tissue changes in EAE and in a small group of MS patients. Surprisingly, we found reversible softening in synchrony with the EAE disease course predominantly in the cortex of the mouse brain. This cortical softening was associated neither with a shift of tissue water compartments as quantified by T2-mapping and diffusion-weighted MRI, nor with leukocyte infiltration as seen by histopathology. Instead, cortical softening correlated with transient structural remodeling of perineuronal nets (PNNs), which involved abnormal chondroitin sulfate expression and microgliosis. These mechanisms also appear to be critical in humans with MS, where tomoelastography for the first time demonstrated marked cortical softening. Taken together, our study shows that neuroinflammation (i) critically affects the integrity of PNNs in cortical brain tissue, in a reversible process that correlates with disease disability in EAE, (ii) reduces the mechanical integrity of brain tissue rather than leading to water accumulation, and (iii) shows similar spatial patterns in humans and mice. These results raise the prospect of leveraging MRE and quantitative MRI for MS staging and monitoring treatment in affected patients.
Collapse
Affiliation(s)
- Rafaela V Silva
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Anna S Morr
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Helge Herthum
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Advanced Neuroimaging, Berlin, Germany
| | - Stefan P Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Susanne Mueller
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Clara S Batzdorf
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Gergely Bertalan
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tom Meyer
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Heiko Tzschätzsch
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRI, Berlin, Germany
| | - Jürgen Braun
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Informatics, Berlin, Germany
| | - Michael Scheel
- Charité - Universitätsmedizin Berlin Corporate, Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Neuroradiology, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC - Experimental and Clinical Research Center, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Ingolf Sack
- Charité - Universitätsmedizin Berlin, Department of Radiology, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Tomitaka A, Vashist A, Kolishetti N, Nair M. Machine learning assisted-nanomedicine using magnetic nanoparticles for central nervous system diseases. NANOSCALE ADVANCES 2023; 5:4354-4367. [PMID: 37638161 PMCID: PMC10448356 DOI: 10.1039/d3na00180f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Magnetic nanoparticles possess unique properties distinct from other types of nanoparticles developed for biomedical applications. Their unique magnetic properties and multifunctionalities are especially beneficial for central nervous system (CNS) disease therapy and diagnostics, as well as targeted and personalized applications using image-guided therapy and theranostics. This review discusses the recent development of magnetic nanoparticles for CNS applications, including Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and drug addiction. Machine learning (ML) methods are increasingly applied towards the processing, optimization and development of nanomaterials. By using data-driven approach, ML has the potential to bridge the gap between basic research and clinical research. We review ML approaches used within the various stages of nanomedicine development, from nanoparticle synthesis and characterization to performance prediction and disease diagnosis.
Collapse
Affiliation(s)
- Asahi Tomitaka
- Department of Computer and Information Sciences, College of Natural and Applied Science, University of Houston-Victoria Texas 77901 USA
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
- Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
- Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
- Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University Miami Florida 33199 USA
| |
Collapse
|
4
|
Gilli F, Ceccarelli A. Magnetic resonance imaging approaches for studying mouse models of multiple sclerosis: A mini review. J Neurosci Res 2023. [DOI: 10.1002/jnr.25193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/30/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023]
Affiliation(s)
- Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center Geisel School of Medicine at Dartmouth Lebanon New Hampshire USA
| | - Antonia Ceccarelli
- Department of Neurology EpiCURA Centre Hospitalier Ath Belgium
- Hearthrhythmanagement, UZB Brussels Belgium
| |
Collapse
|
5
|
Guo D, Huang X, Xiong T, Wang X, Zhang J, Wang Y, Liang J. Molecular mechanisms of programmed cell death in methamphetamine-induced neuronal damage. Front Pharmacol 2022; 13:980340. [PMID: 36059947 PMCID: PMC9428134 DOI: 10.3389/fphar.2022.980340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Methamphetamine, commonly referred to as METH, is a highly addictive psychostimulant and one of the most commonly misused drugs on the planet. Using METH continuously can increase your risk for drug addiction, along with other health complications like attention deficit disorder, memory loss, and cognitive decline. Neurotoxicity caused by METH is thought to play a significant role in the onset of these neurological complications. The molecular mechanisms responsible for METH-caused neuronal damage are discussed in this review. According to our analysis, METH is closely associated with programmed cell death (PCD) in the process that causes neuronal impairment, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. In reviewing this article, some insights are gained into how METH addiction is accompanied by cell death and may help to identify potential therapeutic targets for the neurological impairment caused by METH abuse.
Collapse
Affiliation(s)
- Dongming Guo
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xinlei Huang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xingyi Wang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Jingwen Zhang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Yingge Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
- *Correspondence: Jingyan Liang,
| |
Collapse
|
6
|
Golusda L, Kühl AA, Lehmann M, Dahlke K, Mueller S, Boehm-Sturm P, Saatz J, Traub H, Schnorr J, Freise C, Taupitz M, Biskup K, Blanchard V, Klein O, Sack I, Siegmund B, Paclik D. Visualization of Inflammation in Experimental Colitis by Magnetic Resonance Imaging Using Very Small Superparamagnetic Iron Oxide Particles. Front Physiol 2022; 13:862212. [PMID: 35903065 PMCID: PMC9315402 DOI: 10.3389/fphys.2022.862212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) comprise mainly ulcerative colitis (UC) and Crohn´s disease (CD). Both forms present with a chronic inflammation of the (gastro) intestinal tract, which induces excessive changes in the composition of the associated extracellular matrix (ECM). In UC, the inflammation is limited to the colon, whereas it can occur throughout the entire gastrointestinal tract in CD. Tools for early diagnosis of IBD are still very limited and highly invasive and measures for standardized evaluation of structural changes are scarce. To investigate an efficient non-invasive way of diagnosing intestinal inflammation and early changes of the ECM, very small superparamagnetic iron oxide nanoparticles (VSOPs) in magnetic resonance imaging (MRI) were applied in two mouse models of experimental colitis: the dextran sulfate sodium (DSS)-induced colitis and the transfer model of colitis. For further validation of ECM changes and inflammation, tissue sections were analyzed by immunohistochemistry. For in depth ex-vivo investigation of VSOPs localization within the tissue, Europium-doped VSOPs served to visualize the contrast agent by imaging mass cytometry (IMC). VSOPs accumulation in the inflamed colon wall of DSS-induced colitis mice was visualized in T2* weighted MRI scans. Components of the ECM, especially the hyaluronic acid content, were found to influence VSOPs binding. Using IMC, co-localization of VSOPs with macrophages and endothelial cells in colon tissue was shown. In contrast to the DSS model, colonic inflammation could not be visualized with VSOP-enhanced MRI in transfer colitis. VSOPs present a potential contrast agent for contrast-enhanced MRI to detect intestinal inflammation in mice at an early stage and in a less invasive manner depending on hyaluronic acid content.
Collapse
Affiliation(s)
- Laura Golusda
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- iPATH.Berlin, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anja A. Kühl
- iPATH.Berlin, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Malte Lehmann
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katja Dahlke
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- iPATH.Berlin, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanne Mueller
- Department of Experimental Neurology and Center for Stroke Research, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jessica Saatz
- Bundesanstalt für Materialforschung und-prüfung (BAM), Division Inorganic Trace Analysis, Berlin, Germany
| | - Heike Traub
- Bundesanstalt für Materialforschung und-prüfung (BAM), Division Inorganic Trace Analysis, Berlin, Germany
| | - Joerg Schnorr
- Department of Radiology-Experimental Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Freise
- Department of Radiology-Experimental Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Taupitz
- Department of Radiology-Experimental Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Karina Biskup
- Campus Virchow-Klinikum, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Véronique Blanchard
- Campus Virchow-Klinikum, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Oliver Klein
- BIH-Center for Regenerative Therapies, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology-Experimental Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britta Siegmund
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela Paclik
- Medical Department, Division of Gastroenterology, Infectiology and Rheumatology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- iPATH.Berlin, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Daniela Paclik,
| |
Collapse
|
7
|
Targeting nanoparticles to malignant tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188703. [DOI: 10.1016/j.bbcan.2022.188703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|
8
|
Nishihara H, Engelhardt B. Brain Barriers and Multiple Sclerosis: Novel Treatment Approaches from a Brain Barriers Perspective. Handb Exp Pharmacol 2022; 273:295-329. [PMID: 33237504 DOI: 10.1007/164_2020_407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multiple sclerosis (MS) is considered a prototypic organ specific autoimmune disease targeting the central nervous system (CNS). Blood-brain barrier (BBB) breakdown and enhanced immune cell infiltration into the CNS parenchyma are early hallmarks of CNS lesion formation. Therapeutic targeting of immune cell trafficking across the BBB has proven a successful therapy for the treatment of MS, but comes with side effects and is no longer effective once patients have entered the progressive phase of the disease. Beyond the endothelial BBB, epithelial and glial brain barriers establish compartments in the CNS that differ in their accessibility to the immune system. There is increasing evidence that brain barrier abnormalities persist during the progressive stages of MS. Here, we summarize the role of endothelial, epithelial, and glial brain barriers in maintaining CNS immune privilege and our current knowledge on how impairment of these barriers contributes to MS pathogenesis. We discuss how therapeutic stabilization of brain barriers integrity may improve the safety of current therapeutic regimes for treating MS. This may also allow for the development of entirely novel therapeutic approaches aiming to restore brain barriers integrity and thus CNS homeostasis, which may be specifically beneficial for the treatment of progressive MS.
Collapse
|
9
|
Post-injury ventricular enlargement associates with iron in choroid plexus but not with seizure susceptibility nor lesion atrophy-6-month MRI follow-up after experimental traumatic brain injury. Brain Struct Funct 2021; 227:145-158. [PMID: 34757444 PMCID: PMC8741668 DOI: 10.1007/s00429-021-02395-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/16/2021] [Indexed: 11/15/2022]
Abstract
Ventricular enlargement is one long-term consequence of a traumatic brain injury, and a risk factor for memory disorders and epilepsy. One underlying mechanisms of the chronic ventricular enlargement is disturbed cerebrospinal-fluid secretion or absorption by choroid plexus. We set out to characterize the different aspects of ventricular enlargement in lateral fluid percussion injury (FPI) rat model by magnetic resonance imaging (MRI) and discovered choroid plexus injury in rats that later developed hydrocephalus. We followed the brain pathology progression for 6 months and studied how the ventricular growth was associated with the choroid plexus injury, cortical lesion expansion, hemorrhagic load or blood perfusion deficits. We correlated MRI findings with the seizure susceptibility in pentylenetetrazol challenge and memory function in Morris water-maze. Choroid plexus injury was validated by ferric iron (Prussian blue) and cytoarchitecture (Nissl) stainings. We discovered choroid plexus injury that accumulates iron in 90% of FPI rats by MRI. The amount of the choroid plexus iron remained unaltered 1-, 3- and 6-month post-injury. During this time, the ventricles kept on growing bilaterally. Ventricular growth did not depend on the cortical lesion severity or the cortical hemorrhagic load suggesting a separate pathology. Instead, the results indicate choroidal injury as one driver of the post-traumatic hydrocephalus, since the higher the choroid plexus iron load the larger were the ventricles at 6 months. The ventricle size or the choroid plexus iron load did not associate with seizure susceptibility. Cortical hypoperfusion and memory deficits were worse in rats with greater ventricular growth.
Collapse
|
10
|
Silva RV, Morr AS, Mueller S, Koch SP, Boehm-Sturm P, Rodriguez-Sillke Y, Kunkel D, Tzschätzsch H, Kühl AA, Schnorr J, Taupitz M, Sack I, Infante-Duarte C. Contribution of Tissue Inflammation and Blood-Brain Barrier Disruption to Brain Softening in a Mouse Model of Multiple Sclerosis. Front Neurosci 2021; 15:701308. [PMID: 34497486 PMCID: PMC8419310 DOI: 10.3389/fnins.2021.701308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammatory processes occurring during multiple sclerosis cause disseminated softening of brain tissue, as quantified by in vivo magnetic resonance elastography (MRE). However, inflammation-mediated tissue alterations underlying the mechanical integrity of the brain remain unclear. We previously showed that blood-brain barrier (BBB) disruption visualized by MRI using gadolinium-based contrast agent (GBCA) does not correlate with tissue softening in active experimental autoimmune encephalomyelitis (EAE). However, it is unknown how confined BBB changes and other inflammatory processes may determine local elasticity changes. Therefore, we aim to elucidate which inflammatory hallmarks are determinant for local viscoelastic changes observed in EAE brains. Hence, novel multifrequency MRE was applied in combination with GBCA-based MRI or very small superparamagnetic iron oxide particles (VSOPs) in female SJL mice with induced adoptive transfer EAE (n = 21). VSOPs were doped with europium (Eu-VSOPs) to facilitate the post-mortem analysis. Accumulation of Eu-VSOPs, which was previously demonstrated to be sensitive to immune cell infiltration and ECM remodeling, was also found to be independent of GBCA enhancement. Following registration to a reference brain atlas, viscoelastic properties of the whole brain and areas visualized by either Gd or VSOP were quantified. MRE revealed marked disseminated softening across the whole brain in mice with established EAE (baseline: 3.1 ± 0.1 m/s vs. EAE: 2.9 ± 0.2 m/s, p < 0.0001). A similar degree of softening was observed in sites of GBCA enhancement i.e., mainly within cerebral cortex and brain stem (baseline: 3.3 ± 0.4 m/s vs. EAE: 3.0 ± 0.5 m/s, p = 0.018). However, locations in which only Eu-VSOP accumulated, mainly in fiber tracts (baseline: 3.0 ± 0.4 m/s vs. EAE: 2.6 ± 0.5 m/s, p = 0.023), softening was more pronounced when compared to non-hypointense areas (percent change of stiffness for Eu-VSOP accumulation: -16.81 ± 16.49% vs. for non-hypointense regions: -5.85 ± 3.81%, p = 0.048). Our findings suggest that multifrequency MRE is sensitive to differentiate between local inflammatory processes with a strong immune cell infiltrate that lead to VSOP accumulation, from disseminated inflammation and BBB leakage visualized by GBCA. These pathological events visualized by Eu-VSOP MRI and MRE may include gliosis, macrophage infiltration, alterations of endothelial matrix components, and/or extracellular matrix remodeling. MRE may therefore represent a promising imaging tool for non-invasive clinical assessment of different pathological aspects of neuroinflammation.
Collapse
Affiliation(s)
- Rafaela Vieira Silva
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Anna S Morr
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Susanne Mueller
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Stefan Paul Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Philipp Boehm-Sturm
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Experimental Neurology and Center for Stroke Research, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Berlin, Germany
| | - Yasmina Rodriguez-Sillke
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Désirée Kunkel
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Heiko Tzschätzsch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jörg Schnorr
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Matthias Taupitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Ingolf Sack
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Berlin, Germany
| | - Carmen Infante-Duarte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Immunology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Berlin, Germany
| |
Collapse
|
11
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
12
|
Trends of Chitosan Based Delivery Systems in Neuroregeneration and Functional Recovery in Spinal Cord Injuries. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2020031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most complicated nervous system injuries with challenging treatment and recovery. Regenerative biomaterials such as chitosan are being reported for their wide use in filling the cavities, deliver curative drugs, and also provide adsorption sites for transplanted stem cells. Biomaterial scaffolds utilizing chitosan have shown certain therapeutic effects on spinal cord injury repair with some limitations. Chitosan-based delivery in stem cell transplantation is another strategy that has shown decent success. Stem cells can be directed to differentiate into neurons or glia in vitro. Stem cell-based therapy, biopolymer chitosan delivery strategies, and scaffold-based therapeutic strategies have been advancing as a combinatorial approach for spinal cord injury repair. In this review, we summarize the recent progress in the treatment strategies of SCI due to the use of bioactivity of chitosan-based drug delivery systems. An emphasis on the role of chitosan in neural regeneration has also been highlighted.
Collapse
|
13
|
Islam Y, Leach AG, Smith J, Pluchino S, Coxon CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T. Physiological and Pathological Factors Affecting Drug Delivery to the Brain by Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002085. [PMID: 34105297 PMCID: PMC8188209 DOI: 10.1002/advs.202002085] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/06/2021] [Indexed: 05/04/2023]
Abstract
The prevalence of neurological/neurodegenerative diseases, such as Alzheimer's disease is known to be increasing due to an aging population and is anticipated to further grow in the decades ahead. The treatment of brain diseases is challenging partly due to the inaccessibility of therapeutic agents to the brain. An increasingly important observation is that the physiology of the brain alters during many brain diseases, and aging adds even more to the complexity of the disease. There is a notion that the permeability of the blood-brain barrier (BBB) increases with aging or disease, however, the body has a defense mechanism that still retains the separation of the brain from harmful chemicals in the blood. This makes drug delivery to the diseased brain, even more challenging and complex task. Here, the physiological changes to the diseased brain and aged brain are covered in the context of drug delivery to the brain using nanoparticles. Also, recent and novel approaches are discussed for the delivery of therapeutic agents to the diseased brain using nanoparticle based or magnetic resonance imaging guided systems. Furthermore, the complement activation, toxicity, and immunogenicity of brain targeting nanoparticles as well as novel in vitro BBB models are discussed.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Andrew G. Leach
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- Division of Pharmacy and OptometryThe University of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUK
| | - Jayden Smith
- Cambridge Innovation Technologies Consulting (CITC) LimitedSt. John's Innovation CentreCowley RoadCambridgeCB4 0WSUK
| | - Stefano Pluchino
- Department of Clinical NeurosciencesClifford Allbutt Building – Cambridge Biosciences Campus and NIHR Biomedical Research CentreUniversity of CambridgeHills RoadCambridgeCB2 0HAUK
| | - Christopher R. Coxon
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityWilliam Perkin BuildingEdinburghEH14 4ASUK
| | - Muttuswamy Sivakumaran
- Department of HaematologyPeterborough City HospitalEdith Cavell CampusBretton Gate PeterboroughPeterboroughPE3 9GZUK
| | - James Downing
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Amos A. Fatokun
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Meritxell Teixidò
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 10Barcelona08028Spain
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| |
Collapse
|
14
|
Calderón-Garcidueñas L, Torres-Jardón R, Franco-Lira M, Kulesza R, González-Maciel A, Reynoso-Robles R, Brito-Aguilar R, García-Arreola B, Revueltas-Ficachi P, Barrera-Velázquez JA, García-Alonso G, García-Rojas E, Mukherjee PS, Delgado-Chávez R. Environmental Nanoparticles, SARS-CoV-2 Brain Involvement, and Potential Acceleration of Alzheimer's and Parkinson's Diseases in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2020; 78:479-503. [PMID: 32955466 DOI: 10.3233/jad-200891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's and Parkinson's diseases (AD, PD) have a pediatric and young adult onset in Metropolitan Mexico City (MMC). The SARS-CoV-2 neurotropic RNA virus is triggering neurological complications and deep concern regarding acceleration of neuroinflammatory and neurodegenerative processes already in progress. This review, based on our MMC experience, will discuss two major issues: 1) why residents chronically exposed to air pollution are likely to be more susceptible to SARS-CoV-2 systemic and brain effects and 2) why young people with AD and PD already in progress will accelerate neurodegenerative processes. Secondary mental consequences of social distancing and isolation, fear, financial insecurity, violence, poor health support, and lack of understanding of the complex crisis are expected in MMC residents infected or free of SARS-CoV-2. MMC residents with pre-SARS-CoV-2 accumulation of misfolded proteins diagnostic of AD and PD and metal-rich, magnetic nanoparticles damaging key neural organelles are an ideal host for neurotropic SARS-CoV-2 RNA virus invading the body through the same portals damaged by nanoparticles: nasal olfactory epithelium, the gastrointestinal tract, and the alveolar-capillary portal. We urgently need MMC multicenter retrospective-prospective neurological and psychiatric population follow-up and intervention strategies in place in case of acceleration of neurodegenerative processes, increased risk of suicide, and mental disease worsening. Identification of vulnerable populations and continuous effort to lower air pollution ought to be critical steps.
Collapse
Affiliation(s)
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maricela Franco-Lira
- Colegio de Bachilleres Militarizado, "General Mariano Escobedo", Monterrey, N.L., México
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | | | | | | | | | | | | | | | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
15
|
Millward JM, Ramos Delgado P, Smorodchenko A, Boehmert L, Periquito J, Reimann HM, Prinz C, Els A, Scheel M, Bellmann-Strobl J, Waiczies H, Wuerfel J, Infante-Duarte C, Chien C, Kuchling J, Pohlmann A, Zipp F, Paul F, Niendorf T, Waiczies S. Transient enlargement of brain ventricles during relapsing-remitting multiple sclerosis and experimental autoimmune encephalomyelitis. JCI Insight 2020; 5:140040. [PMID: 33148886 PMCID: PMC7710287 DOI: 10.1172/jci.insight.140040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
The brain ventricles are part of the fluid compartments bridging the CNS with the periphery. Using MRI, we previously observed a pronounced increase in ventricle volume (VV) in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Here, we examined VV changes in EAE and MS patients in longitudinal studies with frequent serial MRI scans. EAE mice underwent serial MRI for up to 2 months, with gadolinium contrast as a proxy of inflammation, confirmed by histopathology. We performed a time-series analysis of clinical and MRI data from a prior clinical trial in which RRMS patients underwent monthly MRI scans over 1 year. VV increased dramatically during preonset EAE, resolving upon clinical remission. VV changes coincided with blood-brain barrier disruption and inflammation. VV was normal at the termination of the experiment, when mice were still symptomatic. The majority of relapsing-remitting MS (RRMS) patients showed dynamic VV fluctuations. Patients with contracting VV had lower disease severity and a shorter duration. These changes demonstrate that VV does not necessarily expand irreversibly in MS but, over short time scales, can expand and contract. Frequent monitoring of VV in patients will be essential to disentangle the disease-related processes driving short-term VV oscillations from persistent expansion resulting from atrophy. Brain ventricle volumes expand and contract during experimental autoimmune encephalomyelitis and relapsing-remitting multiple sclerosis, suggesting that short-term inflammatory processes are interlaced with gradual brain atrophy.
Collapse
Affiliation(s)
- Jason M Millward
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paula Ramos Delgado
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alina Smorodchenko
- Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Laura Boehmert
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Joao Periquito
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Henning M Reimann
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Prinz
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Antje Els
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Jens Wuerfel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Chien
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joseph Kuchling
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Pohlmann
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Frauke Zipp
- Department of Neurology, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sonia Waiczies
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
16
|
Kim H, Lim YM, Kim G, Lee EJ, Lee JH, Kim HW, Kim KK. Choroid plexus changes on magnetic resonance imaging in multiple sclerosis and neuromyelitis optica spectrum disorder. J Neurol Sci 2020; 415:116904. [DOI: 10.1016/j.jns.2020.116904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 01/16/2023]
|
17
|
Nishihara H, Soldati S, Mossu A, Rosito M, Rudolph H, Muller WA, Latorre D, Sallusto F, Sospedra M, Martin R, Ishikawa H, Tenenbaum T, Schroten H, Gosselet F, Engelhardt B. Human CD4 + T cell subsets differ in their abilities to cross endothelial and epithelial brain barriers in vitro. Fluids Barriers CNS 2020; 17:3. [PMID: 32008573 PMCID: PMC6996191 DOI: 10.1186/s12987-019-0165-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Background The brain barriers establish compartments in the central nervous system (CNS) that significantly differ in their communication with the peripheral immune system. In this function they strictly control T-cell entry into the CNS. T cells can reach the CNS by either crossing the endothelial blood–brain barrier (BBB) or the epithelial blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus (ChP). Objective Analysis of the cellular and molecular mechanisms involved in the migration of different human CD4+ T-cell subsets across the BBB versus the BCSFB. Methods Human in vitro models of the BBB and BCSFB were employed to study the migration of circulating and CNS-entry experienced CD4+ T helper cell subsets (Th1, Th1*, Th2, Th17) across the BBB and BCSFB under inflammatory and non-inflammatory conditions in vitro. Results While under non-inflammatory conditions Th1* and Th1 cells preferentially crossed the BBB, under inflammatory conditions the migration rate of all Th subsets across the BBB was comparable. The migration of all Th subsets across the BCSFB from the same donor was 10- to 20-fold lower when compared to their migration across the BBB. Interestingly, Th17 cells preferentially crossed the BCSFB under both, non-inflamed and inflamed conditions. Barrier-crossing experienced Th cells sorted from CSF of MS patients showed migratory characteristics indistinguishable from those of circulating Th cells of healthy donors. All Th cell subsets could additionally cross the BCSFB from the CSF to ChP stroma side. T-cell migration across the BCSFB involved epithelial ICAM-1 irrespective of the direction of migration. Conclusions Our observations underscore that different Th subsets may use different anatomical routes to enter the CNS during immune surveillance versus neuroinflammation with the BCSFB establishing a tighter barrier for T-cell entry into the CNS compared to the BBB. In addition, CNS-entry experienced Th cell subsets isolated from the CSF of MS patients do not show an increased ability to cross the brain barriers when compared to circulating Th cell subsets from healthy donors underscoring the active role of the brain barriers in controlling T-cell entry into the CNS. Also we identify ICAM-1 to mediate T cell migration across the BCSFB.
Collapse
Affiliation(s)
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Adrien Mossu
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.,Transcure Bioservices, Archamps, France
| | - Maria Rosito
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.,Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy
| | - Henriette Rudolph
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - William A Muller
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniela Latorre
- Institute for Research in Biomedicine, Università Della Svizzera Italiana, Bellinzona, Switzerland.,Institute for Microbiology, ETH Zurich, Zurich, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università Della Svizzera Italiana, Bellinzona, Switzerland.,Institute for Microbiology, ETH Zurich, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tobias Tenenbaum
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabien Gosselet
- Blood Brain Barrier Laboratory, University of Artois, Lens, France
| | | |
Collapse
|
18
|
Wang S, Millward JM, Hanke-Vela L, Malla B, Pilch K, Gil-Infante A, Waiczies S, Mueller S, Boehm-Sturm P, Guo J, Sack I, Infante-Duarte C. MR Elastography-Based Assessment of Matrix Remodeling at Lesion Sites Associated With Clinical Severity in a Model of Multiple Sclerosis. Front Neurol 2020; 10:1382. [PMID: 31998225 PMCID: PMC6970413 DOI: 10.3389/fneur.2019.01382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Magnetic resonance imaging (MRI) with gadolinium based contrast agents (GBCA) is routinely used in the clinic to visualize lesions in multiple sclerosis (MS). Although GBCA reveal endothelial permeability, they fail to expose other aspects of lesion formation such as the magnitude of inflammation or tissue changes occurring at sites of blood-brain barrier (BBB) disruption. Moreover, evidence pointing to potential side effects of GBCA has been increasing. Thus, there is an urgent need to develop GBCA-independent imaging tools to monitor pathology in MS. Using MR-elastography (MRE), we previously demonstrated in both MS and the animal model experimental autoimmune encephalomyelitis (EAE) that inflammation was associated with a reduction of brain stiffness. Now, using the relapsing-remitting EAE model, we show that the cerebellum—a region with predominant inflammation in this model—is especially prone to loss of stiffness. We also demonstrate that, contrary to GBCA-MRI, reduction of brain stiffness correlates with clinical disability and is associated with enhanced expression of the extracellular matrix protein fibronectin (FN). Further, we show that FN is largely expressed by activated astrocytes at acute lesions, and reflects the magnitude of tissue remodeling at sites of BBB breakdown. Therefore, MRE could emerge as a safe tool suitable to monitor disease activity in MS.
Collapse
Affiliation(s)
- Shuangqing Wang
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany.,Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Jason M Millward
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany.,Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Laura Hanke-Vela
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Bimala Malla
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Kjara Pilch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Ana Gil-Infante
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Susanne Mueller
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carmen Infante-Duarte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| |
Collapse
|
19
|
Chen X, Zhang B, Liu T, Feng M, Zhang Y, Zhang C, Yao W, Wan L. Liproxstatin-1 Attenuates Morphine Tolerance through Inhibiting Spinal Ferroptosis-like Cell Death. ACS Chem Neurosci 2019; 10:4824-4833. [PMID: 31682397 DOI: 10.1021/acschemneuro.9b00539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Morphine tolerance is a classic, challenging clinical issue. However, the mechanism underlying this phenomenon remains poorly understood. Recently, studies have shown that ferroptosis correlates with drug resistance. Therefore, this study investigated whether spinal cord ferroptosis contributes to morphine tolerance. C57BL/6 mice were continuously subcutaneously injected with morphine, with or without the ferroptosis inhibitor liproxstatin-1. We found that chronic morphine exposure led to morphine antinociception tolerance, accompanied by loss of spinal cord neurons, increase in the levels of iron, malondialdehyde, and reactive oxygen species, and decreases in the levels of superoxide dismutase. Additionally, inflammatory response and mitochondrial shrinkage, processes that are involved in ferroptosis, were observed. Simultaneously, we found that 10 mg/kg of liproxstatin-1 could alleviate iron overload by balancing transferrin receptor protein 1/ferroportin expression and attenuate morphine tolerance by increasing glutathione peroxidase 4 levels, while reducing the levels of malondialdehyde and reactive oxygen species. It also downregulated the expression of extracellularly regulated protein kinases that had been induced by chronic morphine exposure. Our results indicate that spinal cord ferroptosis contributes to morphine tolerance, while liproxstatin-1 attenuates the development of morphine tolerance. These findings suggest that ferroptosis may be a potential therapeutic target for morphine tolerance.
Collapse
Affiliation(s)
- Xuhui Chen
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Bo Zhang
- Department of Anaesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Tongtong Liu
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Miaomiao Feng
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Yue Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Chuanhan Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Wenlong Yao
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| | - Li Wan
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei Province, China
| |
Collapse
|
20
|
Romero-Suárez S, Del Rio Serrato A, Bueno RJ, Brunotte-Strecker D, Stehle C, Figueiredo CA, Hertwig L, Dunay IR, Romagnani C, Infante-Duarte C. The Central Nervous System Contains ILC1s That Differ From NK Cells in the Response to Inflammation. Front Immunol 2019; 10:2337. [PMID: 31649664 PMCID: PMC6795712 DOI: 10.3389/fimmu.2019.02337] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022] Open
Abstract
Innate lymphoid cells (ILCs) are tissue resident cells with organ-specific properties. Here, we show that the central nervous system (CNS) encompasses ILCs. In particular, CD3-NK1.1+ cells present in the murine CNS comprise natural killer (NK) cells, ILC1s, intermediate ILC1s (intILC1s) and ex-ILC3s. We investigated the properties of CNS-ILC1s in comparison with CNS-NK cells during steady state and experimental autoimmune encephalomyelitis (EAE). ILC1s characteristically express CXCR3, CXCR6, DNAM-1, TRAIL, and CD200R and display heightened TNF-α production upon stimulation. In addition, ILC1s express perforin and are able to degranulate, although in a lesser extent than NK cells. Within the CNS compartments, ILC1s are enriched in the choroid plexus where very few NK cells are present, and also reside in the brain parenchyma and meninges. During EAE, ILC1s maintain stable IFN-γ and TNF-α levels while in NK cells the production of these cytokines increases as EAE progresses. Moreover, the amount of ILC1s and intILC1s increase in the parenchyma during EAE, but in contrast to NK cells, they show no signs of local proliferation. The upregulation in the inflamed brain of chemokines involved in ILC1 migration, such as CXCL9, CXCL10, and CXCL16 may lead to a recruitment of ILC1s from meninges or choroid plexus into the brain parenchyma. In sum, CNS-ILC1 phenotype, distribution and moderate inflammatory response during EAE suggest that they may act as gatekeepers involved in the control of neuroinflammation.
Collapse
Affiliation(s)
- Silvina Romero-Suárez
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Alba Del Rio Serrato
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Roemel Jeusep Bueno
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Daniel Brunotte-Strecker
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Caio Andreeta Figueiredo
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Laura Hertwig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany.,Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ildiko R Dunay
- Medical Faculty, Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany
| | - Carmen Infante-Duarte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Berlin, Germany
| |
Collapse
|
21
|
Zhao P, Qian C, Chen YJ, Sheng Y, Ke Y, Qian ZM. Cystathionine β-synthase (CBS) deficiency suppresses erythropoiesis by disrupting expression of heme biosynthetic enzymes and transporter. Cell Death Dis 2019; 10:708. [PMID: 31551410 PMCID: PMC6760157 DOI: 10.1038/s41419-019-1951-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
The reduced iron usage induced by the suppression of erythropoiesis is a major cause of the systemic iron overload in CBS knockout (CBS−/−) mice. However, the relevant mechanisms are unknown. Here, we examined changes in granulocyte/erythroid cell ratios, iron content, and expression of iron-metabolism proteins, including; two key enzymes involved in the heme biosynthetic pathway, ALAS2 (delta-aminolevulinate synthase 2) and FECH (ferrochelatase), a heme exporter from the cytosol and mitochondria, FLVCR (feline leukemia virus subgroup C cellular receptor) as well as EPO (erythropoietin), EPOR (erythropoietin receptor) and HIF-2α (hypoxia inducible factor-2 subunit α), in the blood, bone marrow or liver of CBS−/− (homozygous), CBS+/− (heterozygous) and CBS+/+ (Wild Type) mice. Our findings demonstrate that CBS deficiency can induce a significant reduction in the expression of ALAS2, FECH, FLVCR, HIF-2α, EPO, and EPOR as well as an increase in interleukin-6 (IL-6), hepcidin and iron content in the blood, bone marrow or liver of mice. We conclude that the suppression of erythropoiesis is mainly due to the CBS deficiency-induced disruption in the expression of heme biosynthetic enzymes and heme-transporter.
Collapse
Affiliation(s)
- Peng Zhao
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, FudanUniversity, Shanghai, 200040, China
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yun-Jin Chen
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, FudanUniversity, Shanghai, 200040, China
| | - Yuan Sheng
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, FudanUniversity, Shanghai, 200040, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
| | - Zhong-Ming Qian
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, Shanghai, 201203, China. .,National Clinical Research Center for Aging and Medicine, Huashan Hospital, FudanUniversity, Shanghai, 200040, China. .,Institute of Translational & Precision Medicine, Nantong University, Nantong, JS, 226019, China.
| |
Collapse
|
22
|
MRI coupled with clinically-applicable iron oxide nanoparticles reveals choroid plexus involvement in a murine model of neuroinflammation. Sci Rep 2019; 9:10046. [PMID: 31296913 PMCID: PMC6624288 DOI: 10.1038/s41598-019-46566-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Choroid plexus (ChPs) are involved in the early inflammatory response that occurs in many brain disorders. However, the activation of immune cells within the ChPs in response to neuroinflammation is still largely unexplored in-vivo. There is therefore a crucial need for developing imaging tool that would allow the non-invasive monitoring of ChP involvement in these diseases. Magnetic resonance imaging (MRI) coupled with superparamagnetic particles of iron oxide (SPIO) is a minimally invasive technique allowing to track phagocytic cells in inflammatory diseases. Our aim was to investigate the potential of ultrasmall SPIO (USPIO)-enhanced MRI to monitor ChP involvement in-vivo in a mouse model of neuroinflammation obtained by intraperitoneal administration of lipopolysaccharide. Using high resolution MRI, we identified marked USPIO-related signal drops in the ChPs of animals with neuroinflammation compared to controls. We confirmed these results quantitatively using a 4-points grading system. Ex-vivo analysis confirmed USPIO accumulation within the ChP stroma and their uptake by immune cells. We validated the translational potential of our approach using the clinically-applicable USPIO Ferumoxytol. MR imaging of USPIO accumulation within the ChPs may serve as an imaging biomarker to study ChP involvement in neuroinflammatory disorders that could be applied in a straightforward way in clinical practice.
Collapse
|
23
|
Millward JM, Ariza de Schellenberger A, Berndt D, Hanke-Vela L, Schellenberger E, Waiczies S, Taupitz M, Kobayashi Y, Wagner S, Infante-Duarte C. Application of Europium-Doped Very Small Iron Oxide Nanoparticles to Visualize Neuroinflammation with MRI and Fluorescence Microscopy. Neuroscience 2019; 403:136-144. [DOI: 10.1016/j.neuroscience.2017.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 12/17/2022]
|
24
|
Hsiao YP, Huang CH, Lin YC, Jan TR. Systemic exposure to a single dose of ferucarbotran aggravates neuroinflammation in a murine model of experimental autoimmune encephalomyelitis. Int J Nanomedicine 2019; 14:1229-1240. [PMID: 30863056 PMCID: PMC6391144 DOI: 10.2147/ijn.s189327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Medicinal preparations of iron oxide nanoparticles (IONPs) have been used as MRI contrast agents for the diagnosis of hepatic tumors and the assessment of neuroinflammation and blood–brain barrier integrity. However, it remains mostly unclear whether exposure to IONPs affects neuroinflammation under disease conditions. The present study aims to investigate the impact of IONPs on autoimmune-mediated neuroinflammation using a murine model of experimental autoimmune encephalomyelitis (EAE) that mimics human multiple sclerosis. Methods Mice were either left untreated or immunized with myelin oligodendrocyte glyco-protein on day 0 followed by two injections of pertussis toxin for EAE induction. The EAE mice were intravenously administered with a single dose of the carboxydextran-coated IONPs, ferucarbotran (20 mg Fe/kg) and/or saline (as vehicle) on day 18. Symptoms of EAE were daily monitored until the mice were killed on day 30. Tissue sections of the brain and spinal cord were prepared for histopathological examinations. Iron deposition, neuron demyelination and inflammatory cell infiltration were examined using histochemical staining. The infiltration of microglial and T cells, and cytokine expression were examined by immunohistochemical staining and/or reverse transcription polymerase chain reaction (RT-PCR). Results Iron deposition was detected in both the brain and spinal cord of EAE mice 3 days post-ferucarbotran treatment. The clinical and pathological scores of EAE, percentage of myelin loss and infiltration of inflammatory cells into the spinal cord were significantly deteriorated in EAE mice treated with ferucarbotran. Furthermore, ferucarbotran treatment increased the number of CD3+, Iba-1+, IL-6+, Iba-1+TNF-α+ and CD3+IFN-γ+ cells in the spinal cord of EAE mice. Conclusion A single exposure to ferucarbotran exacerbated neuroinflammation and disease severity of EAE, which might be attributed to the enhanced activation of microglia and T cells. These results demonstrated that the pro-inflammatory effect of ferucarbotran on the central nervous system is closely associated with the deterioration of autoimmunity.
Collapse
Affiliation(s)
- Yai-Ping Hsiao
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan,
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Chin Lin
- Department of Medicinal Botanicals and Health Applications, College of Biotechnology & Bioresources, Da-Yeh University, Changhua, Taiwan
| | - Tong-Rong Jan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan,
| |
Collapse
|
25
|
Hubert V, Chauveau F, Dumot C, Ong E, Berner LP, Canet-Soulas E, Ghersi-Egea JF, Wiart M. Clinical Imaging of Choroid Plexus in Health and in Brain Disorders: A Mini-Review. Front Mol Neurosci 2019; 12:34. [PMID: 30809124 PMCID: PMC6379459 DOI: 10.3389/fnmol.2019.00034] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/25/2019] [Indexed: 11/18/2022] Open
Abstract
The choroid plexuses (ChPs) perform indispensable functions for the development, maintenance and functioning of the brain. Although they have gained considerable interest in the last years, their involvement in brain disorders is still largely unknown, notably because their deep location inside the brain hampers non-invasive investigations. Imaging tools have become instrumental to the diagnosis and pathophysiological study of neurological and neuropsychiatric diseases. This review summarizes the knowledge that has been gathered from the clinical imaging of ChPs in health and brain disorders not related to ChP pathologies. Results are discussed in the light of pre-clinical imaging studies. As seen in this review, to date, most clinical imaging studies of ChPs have used disease-free human subjects to demonstrate the value of different imaging biomarkers (ChP size, perfusion/permeability, glucose metabolism, inflammation), sometimes combined with the study of normal aging. Although very few studies have actually tested the value of ChP imaging biomarkers in patients with brain disorders, these pioneer studies identified ChP changes that are promising data for a better understanding and follow-up of diseases such as schizophrenia, epilepsy and Alzheimer’s disease. Imaging of immune cell trafficking at the ChPs has remained limited to pre-clinical studies so far but has the potential to be translated in patients for example using MRI coupled with the injection of iron oxide nanoparticles. Future investigations should aim at confirming and extending these findings and at developing translational molecular imaging tools for bridging the gap between basic molecular and cellular neuroscience and clinical research.
Collapse
Affiliation(s)
- Violaine Hubert
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France
| | - Fabien Chauveau
- CNRS UMR5292, INSERM U1028, BIORAN Team, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Lyon, France.,CNRS, Lyon, France
| | - Chloé Dumot
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,HCL, Lyon, France
| | - Elodie Ong
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,HCL, Lyon, France
| | | | - Emmanuelle Canet-Soulas
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France
| | - Jean-François Ghersi-Egea
- CNRS UMR5292, INSERM U1028, Fluid Team and BIP Facility, Lyon Neuroscience Research Center, Université Claude Bernard Lyon 1, Lyon, France
| | - Marlène Wiart
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA Lyon, Charles Mérieux Medical School, Oullins, France.,CNRS, Lyon, France
| |
Collapse
|
26
|
Ugga L, Romeo V, Tedeschi E, Brunetti A, Quarantelli M. Superparamagnetic iron oxide nanocolloids in MRI studies of neuroinflammation. J Neurosci Methods 2018; 310:12-23. [PMID: 29913184 DOI: 10.1016/j.jneumeth.2018.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Iron oxide (IO) nanocolloids are being increasingly used to image cellular contribution to neuroinflammation using MRI, as these particles are capable of labeling circulating cells with phagocytic activity, allowing to assess cell trafficking from the blood to neuroinflammation sites. The use of IOs relies on the natural phagocytic properties of immune cells, allowing their labeling either in vitro or directly in vivo, following intravenous injection. Despite concerns on the specificity of the latter approach, the widespread availability and relatively low cost of these techniques, coupled to a sensitivity that allows to reach single cell detection, have promoted their use in several preclinical and clinical studies. In this review, we discuss the results of currently available preclinical and clinical IO-enhanced MRI studies of immune cell trafficking in neuroinflammation, examining the specificity of the existing findings, in view of the different possible mechanisms underlying IO accumulation in the brain. From this standpoint, we assess the implications of the temporal and spatial differences in the enhancement pattern of IOs, compared to gadolinium-based contrast agents, a clinically established MRI marker blood-brain barrier breakdown. While concerns on the specificity of cell labeling obtained using the in-vivo labeling approach still need to be fully addressed, these techniques have indeed proved able to provide additional information on neuroinflammatory phenomena, as compared to conventional Gadolinium-enhanced MRI.
Collapse
Affiliation(s)
- Lorenzo Ugga
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy.
| |
Collapse
|
27
|
Ghersi-Egea JF, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol 2018; 135:337-361. [PMID: 29368213 DOI: 10.1007/s00401-018-1807-1] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/07/2018] [Accepted: 01/13/2018] [Indexed: 02/07/2023]
Abstract
The barrier between the blood and the ventricular cerebrospinal fluid (CSF) is located at the choroid plexuses. At the interface between two circulating fluids, these richly vascularized veil-like structures display a peculiar morphology explained by their developmental origin, and fulfill several functions essential for CNS homeostasis. They form a neuroprotective barrier preventing the accumulation of noxious compounds into the CSF and brain, and secrete CSF, which participates in the maintenance of a stable CNS internal environment. The CSF circulation plays an important role in volume transmission within the developing and adult brain, and CSF compartments are key to the immune surveillance of the CNS. In these contexts, the choroid plexuses are an important source of biologically active molecules involved in brain development, stem cell proliferation and differentiation, and brain repair. By sensing both physiological changes in brain homeostasis and peripheral or central insults such as inflammation, they also act as sentinels for the CNS. Finally, their role in the control of immune cell traffic between the blood and the CSF confers on the choroid plexuses a function in neuroimmune regulation and implicates them in neuroinflammation. The choroid plexuses, therefore, deserve more attention while investigating the pathophysiology of CNS diseases and related comorbidities.
Collapse
Affiliation(s)
- Jean-François Ghersi-Egea
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS, UMR5292, University Lyon-1, Lyon, France.
| | - Nathalie Strazielle
- Fluid Team, Lyon Neurosciences Research Center, INSERM U1028, CNRS, UMR5292, University Lyon-1, Lyon, France
- Brain-i, Lyon, France
| | | | | | | | | |
Collapse
|
28
|
de Schellenberger AA, Hauptmann R, Millward JM, Schellenberger E, Kobayashi Y, Taupitz M, Infante-Duarte C, Schnorr J, Wagner S. Synthesis of europium-doped VSOP, customized enhancer solution and improved microscopy fluorescence methodology for unambiguous histological detection. J Nanobiotechnology 2017; 15:71. [PMID: 29017510 PMCID: PMC5634840 DOI: 10.1186/s12951-017-0301-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/23/2017] [Indexed: 12/03/2022] Open
Abstract
Background Intrinsic iron in biological tissues frequently precludes unambiguous the identification of iron oxide nanoparticles when iron-based detection methods are used. Here we report the full methodology for synthesizing very small iron oxide nanoparticles (VSOP) doped with europium (Eu) in their iron oxide core (Eu-VSOP) and their unambiguous qualitative and quantitative detection by fluorescence. Methods and results The resulting Eu-VSOP contained 0.7 to 2.7% Eu relative to iron, which was sufficient for fluorescent detection while not altering other important particle parameters such as size, surface charge, or relaxivity. A customized enhancer solution with high buffer capacity and nearly neutral pH was developed to provide an antenna system that allowed fluorescent detection of Eu-VSOP in cells and histologic tissue slices as well as in solutions even under acidic conditions as frequently obtained from dissolved organic material. This enhancer solution allowed detection of Eu-VSOP using a standard fluorescence spectrophotometer and a fluorescence microscope equipped with a custom filter set with an excitation wavelength (λex) of 338 nm and an emission wavelength (λem) of 616 nm. Conclusion The fluorescent detection of Eu-doped very small iron oxide nanoparticles (Eu-VSOP) provides a straightforward tool to unambiguously characterize VSOP biodistribution and toxicology at tissue, and cellular levels, providing a sensitive analytical tool to detect Eu-doped IONP in dissolved organ tissue and biological fluids with fluorescence instruments. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0301-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela Ariza de Schellenberger
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Ralf Hauptmann
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Jason M Millward
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany.,Institute for Medical Immunology, Charité-Universitätsmedizin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Eyk Schellenberger
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Yuske Kobayashi
- Department of Interventional and Diagnostic Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Matthias Taupitz
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité-Universitätsmedizin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jörg Schnorr
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Susanne Wagner
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
29
|
Kobayashi Y, Hauptmann R, Kratz H, Ebert M, Wagner S, Taupitz M. Europium doping of superparamagnetic iron oxide nanoparticles enables their detection by fluorescence microscopy and for quantitative analytics. Technol Health Care 2017; 25:457-470. [DOI: 10.3233/thc-161285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Yuske Kobayashi
- Department of Interventional and Diagnostic Radiology and Nuclear Medicine, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ralf Hauptmann
- Department of Radiology, Division of Experimental Radiology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Harald Kratz
- Department of Radiology, Division of Experimental Radiology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Monika Ebert
- Department of Radiology, Division of Experimental Radiology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Matthias Taupitz
- Department of Radiology, Division of Experimental Radiology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
30
|
Inflammation-induced brain endothelial activation leads to uptake of electrostatically stabilized iron oxide nanoparticles via sulfated glycosaminoglycans. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1411-1421. [DOI: 10.1016/j.nano.2017.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/20/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
|
31
|
Kirschbaum K, Sonner JK, Zeller MW, Deumelandt K, Bode J, Sharma R, Krüwel T, Fischer M, Hoffmann A, Costa da Silva M, Muckenthaler MU, Wick W, Tews B, Chen JW, Heiland S, Bendszus M, Platten M, Breckwoldt MO. In vivo nanoparticle imaging of innate immune cells can serve as a marker of disease severity in a model of multiple sclerosis. Proc Natl Acad Sci U S A 2016; 113:13227-13232. [PMID: 27799546 PMCID: PMC5135308 DOI: 10.1073/pnas.1609397113] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Innate immune cells play a key role in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Current clinical imaging is restricted to visualizing secondary effects of inflammation, such as gliosis and blood-brain barrier disruption. Advanced molecular imaging, such as iron oxide nanoparticle imaging, can allow direct imaging of cellular and molecular activity, but the exact cell types that phagocytose nanoparticles in vivo and how phagocytic activity relates to disease severity is not well understood. In this study we used MRI to map inflammatory infiltrates using high-field MRI and fluorescently labeled cross-linked iron oxide nanoparticles for cell tracking. We confirmed nanoparticle uptake and MR detectability ex vivo. Using in vivo MRI, we identified extensive nanoparticle signal in the cerebellar white matter and circumscribed cortical gray matter lesions that developed during the disease course (4.6-fold increase of nanoparticle accumulation in EAE compared with healthy controls, P < 0.001). Nanoparticles showed good cellular specificity for innate immune cells in vivo, labeling activated microglia, infiltrating macrophages, and neutrophils, whereas there was only sparse uptake by adaptive immune cells. Importantly, nanoparticle signal correlated better with clinical disease than conventional gadolinium (Gd) imaging (r, 0.83 for nanoparticles vs. 0.71 for Gd-imaging, P < 0.001). We validated our approach using the Food and Drug Administration-approved iron oxide nanoparticle ferumoxytol. Our results show that noninvasive molecular imaging of innate immune responses can serve as an imaging biomarker of disease activity in autoimmune-mediated neuroinflammation with potential clinical applications in a wide range of inflammatory diseases.
Collapse
Affiliation(s)
- Klara Kirschbaum
- German Cancer Consortium, Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jana K Sonner
- German Cancer Consortium, Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias W Zeller
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
| | - Katrin Deumelandt
- German Cancer Consortium, Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Julia Bode
- Schaller Research Group, University of Heidelberg and DKFZ, 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, DKFZ, 69120 Heidelberg, Germany
| | - Rakesh Sharma
- Schaller Research Group, University of Heidelberg and DKFZ, 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, DKFZ, 69120 Heidelberg, Germany
| | - Thomas Krüwel
- Schaller Research Group, University of Heidelberg and DKFZ, 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, DKFZ, 69120 Heidelberg, Germany
| | - Manuel Fischer
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Angelika Hoffmann
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Milene Costa da Silva
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal
| | - Martina U Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium, Clinical Cooperation Unit Neurooncology, DKFZ, 69120 Heidelberg, Germany
| | - Björn Tews
- Schaller Research Group, University of Heidelberg and DKFZ, 69120 Heidelberg, Germany
- Molecular Mechanisms of Tumor Invasion, DKFZ, 69120 Heidelberg, Germany
| | - John W Chen
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
| | - Sabine Heiland
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael Platten
- German Cancer Consortium, Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael O Breckwoldt
- German Cancer Consortium, Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Zuidema JM, Gilbert RJ, Osterhout DJ. Nanoparticle Technologies in the Spinal Cord. Cells Tissues Organs 2016; 202:102-115. [PMID: 27701150 DOI: 10.1159/000446647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
Nanoparticles are increasingly being studied within experimental models of spinal cord injury (SCI). They are used to image cells and tissue, move cells to specific regions of the spinal cord, and deliver therapeutic agents locally. The focus of this article is to provide a brief overview of the different types of nanoparticles being studied for spinal cord applications and present data showing the capability of nanoparticles to deliver the chondroitinase ABC (chABC) enzyme locally following acute SCI in rats. Nanoparticles releasing chABC helped promote axonal regeneration following injury, and the nanoparticles also protected the enzyme from rapid degradation. In summary, nanoparticles are viable materials for diagnostic or therapeutic applications within experimental models of SCI and have potential for future clinical use.
Collapse
|
33
|
Makela AV, Murrell DH, Parkins KM, Kara J, Gaudet JM, Foster PJ. Cellular Imaging With MRI. Top Magn Reson Imaging 2016; 25:177-186. [PMID: 27748707 DOI: 10.1097/rmr.0000000000000101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cellular magnetic resonance imaging (MRI) is an evolving field of imaging with strong translational and research potential. The ability to detect, track, and quantify cells in vivo and over time allows for studying cellular events related to disease processes and may be used as a biomarker for decisions about treatments and for monitoring responses to treatments. In this review, we discuss methods for labeling cells, various applications for cellular MRI, the existing limitations, strategies to address these shortcomings, and clinical cellular MRI.
Collapse
Affiliation(s)
- Ashley V Makela
- *Imaging Research Laboratories, Robarts Research Institute †Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Korchinski DJ, Taha M, Yang R, Nathoo N, Dunn JF. Iron Oxide as an MRI Contrast Agent for Cell Tracking. MAGNETIC RESONANCE INSIGHTS 2015; 8:15-29. [PMID: 26483609 PMCID: PMC4597836 DOI: 10.4137/mri.s23557] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 01/07/2023]
Abstract
Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation.
Collapse
Affiliation(s)
- Daniel J. Korchinski
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - May Taha
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Runze Yang
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nabeela Nathoo
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,CORRESPONDENCE:
| |
Collapse
|
35
|
Virel A, Rehnmark A, Orädd G, Olmedo-Díaz S, Faergemann E, Strömberg I. Magnetic resonance imaging as a tool to image neuroinflammation in a rat model of Parkinson's disease--phagocyte influx to the brain is promoted by bilberry-enriched diet. Eur J Neurosci 2015; 42:2761-71. [PMID: 26273789 DOI: 10.1111/ejn.13044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
Abstract
Neuroinflammation is a chronic event in neurodegenerative disorders. In the rat model of Parkinson's disease, including a striatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA), antioxidant treatment affects the inflammatory process. Despite a heavy accumulation of microglia early after the injury, dopamine nerve fibre regeneration occurs. It remains unclear why this heavy accumulation of microglia is found early after the lesion in antioxidant-treated animals, or even more, what is the origin of these microglia. In this study magnetic resonance imaging (MRI) was used to elucidate whether the inflammatory response was generated from the blood or from activated brain microglia. Superparamagnetic iron oxide (SPIO) nanoparticles were injected intravenously prior to a striatal 6-OHDA injection to tag phagocytes in the blood. Rats were fed either with bilberry-enriched or control diet. T2*-weighted MRI scans were performed 1 week after the lesion, and hypointense areas were calculated from T2*-weighted images, to monitor the presence of SPIO particles. The results revealed that feeding the animals with bilberries significantly promoted accumulation of blood-derived immune cells. Gadolinium-enhanced MRI demonstrated no difference in leakage of the blood-brain barrier independent of diets. To conclude, bilberry-enriched diet promotes an influx of periphery-derived immune cells to the brain early after injury.
Collapse
Affiliation(s)
- Ana Virel
- Integrative Medical Biology, Umeå University, SE 901 87, Umeå, Sweden
| | - Anna Rehnmark
- Integrative Medical Biology, Umeå University, SE 901 87, Umeå, Sweden
| | - Greger Orädd
- Department of Radiation Sciences, Umeå University, SE 901 87 Umeå, Sweden
| | - Sonia Olmedo-Díaz
- Integrative Medical Biology, Umeå University, SE 901 87, Umeå, Sweden
| | - Erik Faergemann
- Integrative Medical Biology, Umeå University, SE 901 87, Umeå, Sweden
| | - Ingrid Strömberg
- Integrative Medical Biology, Umeå University, SE 901 87, Umeå, Sweden
| |
Collapse
|
36
|
Janssen A, Fiebiger S, Bros H, Hertwig L, Romero-Suarez S, Hamann I, Chanvillard C, Bellmann-Strobl J, Paul F, Millward JM, Infante-Duarte C. Treatment of Chronic Experimental Autoimmune Encephalomyelitis with Epigallocatechin-3-Gallate and Glatiramer Acetate Alters Expression of Heme-Oxygenase-1. PLoS One 2015; 10:e0130251. [PMID: 26114502 PMCID: PMC4482710 DOI: 10.1371/journal.pone.0130251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 05/18/2015] [Indexed: 01/17/2023] Open
Abstract
We previously demonstrated that epigallocatechin-3-gallate (EGCG) synergizes with the immunomodulatory agent glatiramer acetate (GA) in eliciting anti-inflammatory and neuroprotective effects in the relapsing-remitting EAE model. Thus, we hypothesized that mice with chronic EAE may also benefit from this combination therapy. We first assessed how a treatment with a single dose of GA together with daily application of EGCG may modulate EAE. Although single therapies with a suboptimal dose of GA or EGCG led to disease amelioration and reduced CNS inflammation, the combination therapy had no effects. While EGCG appeared to preserve axons and myelin, the single GA dose did not improve axonal damage or demyelination. Interestingly, the neuroprotective effect of EGCG was abolished when GA was applied in combination. To elucidate how a single dose of GA may interfere with EGCG, we focused on the anti-inflammatory, iron chelating and anti-oxidant properties of EGCG. Surprisingly, we observed that while EGCG induced a downregulation of the gene expression of heme oxygenase-1 (HO-1) in affected CNS areas, the combined therapy of GA+EGCG seems to promote an increased HO-1 expression. These data suggest that upregulation of HO-1 may contribute to diminish the neuroprotective benefits of EGCG alone in this EAE model. Altogether, our data indicate that neuroprotection by EGCG in chronic EAE may involve regulation of oxidative processes, including downmodulation of HO-1. Further investigation of the re-dox balance in chronic neuroinflammation and in particular functional studies on HO-1 are warranted to understand its role in disease progression.
Collapse
Affiliation(s)
- Antonia Janssen
- Institute for Medical Immunology, Charité—Universitätmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sebastian Fiebiger
- Institute for Medical Immunology, Charité—Universitätmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Helena Bros
- Institute for Medical Immunology, Charité—Universitätmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- NeuroCure Clinical Research Center, Charité—Universitätmedizin Berlin, Berlin, Germany
| | - Laura Hertwig
- Institute for Medical Immunology, Charité—Universitätmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Silvina Romero-Suarez
- Institute for Medical Immunology, Charité—Universitätmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Isabell Hamann
- Institute for Medical Immunology, Charité—Universitätmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Coralie Chanvillard
- Institute for Medical Immunology, Charité—Universitätmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Judith Bellmann-Strobl
- Experimental and Clinical Research Center, joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- NeuroCure Clinical Research Center, Charité—Universitätmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- NeuroCure Clinical Research Center, Charité—Universitätmedizin Berlin, Berlin, Germany
- Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jason M. Millward
- Institute for Medical Immunology, Charité—Universitätmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité—Universitätmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
- * E-mail:
| |
Collapse
|
37
|
Demeestere D, Libert C, Vandenbroucke RE. Clinical implications of leukocyte infiltration at the choroid plexus in (neuro)inflammatory disorders. Drug Discov Today 2015; 20:928-41. [PMID: 25979470 DOI: 10.1016/j.drudis.2015.05.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/29/2022]
Abstract
The choroid plexus (CP) is a highly vascularized organ located in the brain ventricles and contains a single epithelial cell layer forming the blood-cerebrospinal fluid barrier (BCSFB). This barrier is crucial for immune surveillance in health and is an underestimated gate for entry of immune cells during numerous inflammatory disorders. Several of these disorders are accompanied by disturbance of the BCSFB and increased leukocyte infiltration, which affects neuroinflammation. Understanding the mechanism of immune cell entry at the CP might lead to identification of new therapeutic targets. Here, we focus on current knowledge of leukocyte infiltration at the CP in inflammatory conditions and its therapeutic implications.
Collapse
Affiliation(s)
- Delphine Demeestere
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
38
|
Neubert J, Wagner S, Kiwit J, Bräuer AU, Glumm J. New findings about iron oxide nanoparticles and their different effects on murine primary brain cells. Int J Nanomedicine 2015; 10:2033-49. [PMID: 25792834 PMCID: PMC4364595 DOI: 10.2147/ijn.s74404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physicochemical properties of superparamagnetic iron oxide nanoparticles (SPIOs) enable their application in the diagnostics and therapy of central nervous system diseases. However, since crucial information regarding side effects of particle–cell interactions within the central nervous system is still lacking, we investigated the influence of novel very small iron oxide particles or the clinically approved ferucarbotran or ferumoxytol on the vitality and morphology of brain cells. We exposed primary cell cultures of microglia and hippocampal neurons, as well as neuron–glia cocultures to varying concentrations of SPIOs for 6 and/or 24 hours, respectively. Here, we show that SPIO accumulation by microglia and subsequent morphological alterations strongly depend on the respective nanoparticle type. Microglial viability was severely compromised by high SPIO concentrations, except in the case of ferumoxytol. While ferumoxytol did not cause immediate microglial death, it induced severe morphological alterations and increased degeneration of primary neurons. Additionally, primary neurons clearly degenerated after very small iron oxide particle and ferucarbotran exposure. In neuron–glia cocultures, SPIOs rather stimulated the outgrowth of neuronal processes in a concentration- and particle-dependent manner. We conclude that the influence of SPIOs on brain cells not only depends on the particle type but also on the physiological system they are applied to.
Collapse
Affiliation(s)
- Jenni Neubert
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Susanne Wagner
- Institute for Radiology, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Jürgen Kiwit
- Clinic for Neurosurgery, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Anja U Bräuer
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - Jana Glumm
- Institute of Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitaetsmedizin Berlin, Berlin, Germany ; Clinic for Neurosurgery, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| |
Collapse
|
39
|
Yallapu MM, Chauhan N, Othman SF, Khalilzad-Sharghi V, Ebeling MC, Khan S, Jaggi M, Chauhan SC. Implications of protein corona on physico-chemical and biological properties of magnetic nanoparticles. Biomaterials 2015; 46:1-12. [PMID: 25678111 DOI: 10.1016/j.biomaterials.2014.12.045] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/12/2014] [Accepted: 12/20/2014] [Indexed: 11/26/2022]
Abstract
Interaction of serum proteins and nanoparticles leads to a nanoparticle-protein complex formation that defines the rational strategy for a clinically relevant formulation for drug delivery, hyperthermia, and magnetic resonance imaging (MRI) applications in cancer nanomedicine. Given this perspective, we have examined the pattern of human serum protein corona formation with our recently engineered magnetic nanoparticles (MNPs). The alteration in particle size, zeta potential, hemotoxicity, cellular uptake/cancer cells targeting potential, and MRI properties of the MNPs after formation of human serum (HS) protein corona were studied. Our results indicated no significant change in particle size of our MNPs upon incubation with 0.5-50 wt/v% human serum, while zeta potential of MNPs turned negative due to human serum adsorption. When incubated with an increased serum and particle concentration, apolipoprotein E was adsorbed on the surface of MNPs apart from serum albumin and transferrin. However, there was no significant primary or secondary structural alterations observed in serum proteins through Fourier transform infrared spectroscopy, X-ray diffraction, and circular dichroism. Hemolysis assay suggests almost no hemolysis at the tested concentrations (up to 1 mg/mL) for MNPs compared to the sodium dodecyl sulfate (positive control). Additionally, improved internalization and uptake of MNPs by C4-2B and Panc-1 cancer cells were observed upon incubation with human serum (HS). After serum protein adsorption to the surface of MNPs, the close vicinity within T1 (∼1.33-1.73 s) and T2 (∼12.35-13.43 ms) relaxation times suggest our MNPs retained inherent MRI potential even after biomolecular protein adsorption. All these superior clinical parameters potentially enable clinical translation and use of this formulation for next generation nanomedicine for drug delivery, cancer-targeting, imaging and theranostic applications.
Collapse
Affiliation(s)
- Murali M Yallapu
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shadi F Othman
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Vahid Khalilzad-Sharghi
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Mara C Ebeling
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Sheema Khan
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and the Center for Cancer Research, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
40
|
Sriramoju B, Kanwar RK, Kanwar JR. Neurobehavioral burden of multiple sclerosis with nanotheranostics. Neuropsychiatr Dis Treat 2015; 11:2675-89. [PMID: 26508863 PMCID: PMC4610886 DOI: 10.2147/ndt.s82768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating neurological disorder affecting people worldwide; women are affected more than men. MS results in serious neurological deficits along with behavioral compromise, the mechanisms of which still remain unclear. Behavioral disturbances such as depression, anxiety, cognitive impairment, psychosis, euphoria, sleep disturbances, and fatigue affect the quality of life in MS patients. Among these, depression and psychosis are more common than any other neurological disorders. In addition, depression is associated with other comorbidities. Although anxiety is often misdiagnosed in MS patients, it can induce suicidal ideation if it coexists with depression. An interrelation between sleep abnormalities and fatigue is also reported among MS patients. In addition, therapeutics for MS is always a challenge because of the presence of the blood-brain barrier, adding to the lack of detailed understanding of the disease pathology. In this review, we tried to summarize various behavioral pathologies and their association with MS, followed by its conventional treatment and nanotheranostics.
Collapse
Affiliation(s)
- Bhasker Sriramoju
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine, Molecular and Medical Research, Faculty of Health, Deakin University, VIC, Australia
| | - Rupinder K Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine, Molecular and Medical Research, Faculty of Health, Deakin University, VIC, Australia
| | - Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine, Molecular and Medical Research, Faculty of Health, Deakin University, VIC, Australia
| |
Collapse
|
41
|
Peng H, Liu X, Wang G, Li M, Bratlie KM, Cochran E, Wang Q. Polymeric multifunctional nanomaterials for theranostics. J Mater Chem B 2015; 3:6856-6870. [DOI: 10.1039/c5tb00617a] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Various applications of polymeric multifunctional nanomaterials for theranostics.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames
- USA
- Department of Pharmaceutics
| | - Xiaoying Liu
- Department of Pharmaceutics
- Daqing Campus
- Harbin Medical University
- Daqing
- China
| | - Guangtian Wang
- Department of Pharmaceutics
- Daqing Campus
- Harbin Medical University
- Daqing
- China
| | - Minghui Li
- Department of Pharmaceutics
- Daqing Campus
- Harbin Medical University
- Daqing
- China
| | - Kaitlin M. Bratlie
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames
- USA
- Depatrment of Materials Science and Engineering
| | - Eric Cochran
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames
- USA
| | - Qun Wang
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames
- USA
| |
Collapse
|
42
|
Gauberti M, Montagne A, Quenault A, Vivien D. Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci 2014; 8:389. [PMID: 25505871 PMCID: PMC4245913 DOI: 10.3389/fncel.2014.00389] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 10/31/2014] [Indexed: 01/09/2023] Open
Abstract
Although the blood-brain barrier (BBB) was thought to protect the brain from the effects of the immune system, immune cells can nevertheless migrate from the blood to the brain, either as a cause or as a consequence of central nervous system (CNS) diseases, thus contributing to their evolution and outcome. Accordingly, as the interface between the CNS and the peripheral immune system, the BBB is critical during neuroinflammatory processes. In particular, endothelial cells are involved in the brain response to systemic or local inflammatory stimuli by regulating the cellular movement between the circulation and the brain parenchyma. While neuropathological conditions differ in etiology and in the way in which the inflammatory response is mounted and resolved, cellular mechanisms of neuroinflammation are probably similar. Accordingly, neuroinflammation is a hallmark and a decisive player of many CNS diseases. Thus, molecular magnetic resonance imaging (MRI) of inflammatory processes is a central theme of research in several neurological disorders focusing on a set of molecules expressed by endothelial cells, such as adhesion molecules (VCAM-1, ICAM-1, P-selectin, E-selectin, …), which emerge as therapeutic targets and biomarkers for neurological diseases. In this review, we will present the most recent advances in the field of preclinical molecular MRI. Moreover, we will discuss the possible translation of molecular MRI to the clinical setting with a particular emphasis on myeloperoxidase imaging, autologous cell tracking, and targeted iron oxide particles (USPIO, MPIO).
Collapse
Affiliation(s)
- Maxime Gauberti
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Axel Montagne
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Aurélien Quenault
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| | - Denis Vivien
- Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université de Caen Basse-Normandie - GIP Cyceron Caen, France
| |
Collapse
|
43
|
Ajetunmobi A, Prina-Mello A, Volkov Y, Corvin A, Tropea D. Nanotechnologies for the study of the central nervous system. Prog Neurobiol 2014; 123:18-36. [PMID: 25291406 DOI: 10.1016/j.pneurobio.2014.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/16/2022]
Abstract
The impact of central nervous system (CNS) disorders on the human population is significant, contributing almost €800 billion in annual European healthcare costs. These disorders not only have a disabling social impact but also a crippling economic drain on resources. Developing novel therapeutic strategies for these disorders requires a better understanding of events that underlie mechanisms of neural circuit physiology. Studying the relationship between genetic expression, synapse development and circuit physiology in CNS function is a challenging task, involving simultaneous analysis of multiple parameters and the convergence of several disciplines and technological approaches. However, current gold-standard techniques used to study the CNS have limitations that pose unique challenges to furthering our understanding of functional CNS development. The recent advancement in nanotechnologies for biomedical applications has seen the emergence of nanoscience as a key enabling technology for delivering a translational bridge between basic and clinical research. In particular, the development of neuroimaging and electrophysiology tools to identify the aetiology and progression of CNS disorders have led to new insights in our understanding of CNS physiology and the development of novel diagnostic modalities for therapeutic intervention. This review focuses on the latest applications of these nanotechnologies for investigating CNS function and the improved diagnosis of CNS disorders.
Collapse
Affiliation(s)
- A Ajetunmobi
- Department of Clinical Medicine, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland
| | - A Prina-Mello
- Department of Clinical Medicine, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland.
| | - Y Volkov
- Department of Clinical Medicine, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland
| | - A Corvin
- Department of Psychiatry, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland
| | - D Tropea
- Department of Psychiatry, Institute of Molecular Medicine, St. James' Hospital, Trinity College Dublin, Ireland.
| |
Collapse
|
44
|
Nathoo N, Yong VW, Dunn JF. Understanding disease processes in multiple sclerosis through magnetic resonance imaging studies in animal models. NEUROIMAGE-CLINICAL 2014; 4:743-56. [PMID: 24936425 PMCID: PMC4053634 DOI: 10.1016/j.nicl.2014.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 01/11/2023]
Abstract
There are exciting new advances in multiple sclerosis (MS) resulting in a growing understanding of both the complexity of the disorder and the relative involvement of grey matter, white matter and inflammation. Increasing need for preclinical imaging is anticipated, as animal models provide insights into the pathophysiology of the disease. Magnetic resonance (MR) is the key imaging tool used to diagnose and to monitor disease progression in MS, and thus will be a cornerstone for future research. Although gadolinium-enhancing and T2 lesions on MRI have been useful for detecting MS pathology, they are not correlative of disability. Therefore, new MRI methods are needed. Such methods require validation in animal models. The increasing necessity for MRI of animal models makes it critical and timely to understand what research has been conducted in this area and what potential there is for use of MRI in preclinical models of MS. Here, we provide a review of MRI and magnetic resonance spectroscopy (MRS) studies that have been carried out in animal models of MS that focus on pathology. We compare the MRI phenotypes of animals and patients and provide advice on how best to use animal MR studies to increase our understanding of the linkages between MR and pathology in patients. This review describes how MRI studies of animal models have been, and will continue to be, used in the ongoing effort to understand MS. MRI studies of pathology in various animal models of MS are reviewed. MRI phenotypes in animal models of MS and MS patients are compared. Animal MRI can increase understanding of links between MR and pathology in patients.
Collapse
Affiliation(s)
- Nabeela Nathoo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F. Dunn
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
- Experimental Imaging Centre, University of Calgary, Calgary, Alberta, Canada
- Corresponding author at: Department of Radiology, University of Calgary, 3330 Hospital Drive, N.W., Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|