1
|
Zhu W, Tanday N, Flatt PR, Irwin N. Pancreatic polypeptide revisited: Potential therapeutic effects in obesity-diabetes. Peptides 2023; 160:170923. [PMID: 36509169 DOI: 10.1016/j.peptides.2022.170923] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Pancreatic polypeptide (PP), a member of the neuropeptide Y (NPY) family of peptides, is a hormone secreted from the endocrine pancreas with established actions on appetite regulation. Thus, through activation of hypothalamic neuropeptide Y4 (NPY4R or Y4) receptors PP induces satiety in animals and humans, suggesting potential anti-obesity actions. In addition, despite being actively secreted from pancreatic islets and evidence of local Y4 receptor expression, PP mediated effects on the endocrine pancreas have not been fully elucidated. To date, it appears that PP possesses an acute insulinostatic effect, similar to the impact of other peptides from the NPY family. However, it is interesting that prolonged activation of pancreatic Y1 receptors leads to established benefits on beta-cell turnover, preservation of beta-cell identity and improved insulin secretory responsiveness. This may hint towards possible similar anti-diabetic actions of sustained Y4 receptor modulation, since the Y1 and Y4 receptors trigger comparable cell signalling pathways. In terms of exploiting the prospective therapeutic promise of PP, this is severely restricted by a short circulating half-life as is the case for many regulatory peptide hormones. It follows that long-acting, enzyme resistant, forms of PP will be required to determine viability of the Y4 receptor as an anti-obesity and -diabetes drug target. The current review aims to refocus interest on the biology of PP and highlight opportunities for therapeutic development.
Collapse
|
2
|
Li M. The Origination of Growth Hormone/Insulin-Like Growth Factor System: A Story From Ancient Basal Chordate Amphioxus. Front Endocrinol (Lausanne) 2022; 13:825722. [PMID: 35432211 PMCID: PMC9010856 DOI: 10.3389/fendo.2022.825722] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
The growth hormone/insulin-like growth factor (GH/IGF) system, also called the pituitary-liver axis, has a somatotrophic role in the body. Although the GH/IGF system has always been regarded as a vertebrate-specific endocrine system, its actual origin remained unknown for a long time. The basal chordate, amphioxus, occupies an evolutionary position between vertebrates and invertebrates. Impressively, most of the members of the GH/IGF system are present in the amphioxus. The GH-like molecule in the amphioxus is mainly expressed in Hatschek's pit. It functions similarly to vertebrate GH and has a GH receptor-like binding partner. The amphioxus IGF-like peptide shows mitogenic activity and an expression pattern resembling that of vertebrate IGF-I. The receptor of IGF-like peptide and IGF binding protein (IGFBP) have also been demonstrated to exist in the amphioxus. These results reveal the origin of the gene families in the GH/IGF system, providing strong evidence that this system emerged in the amphioxus.
Collapse
Affiliation(s)
- Mengyang Li
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Korzh S, Winata CL, Gong Z, Korzh V. The development of zebrafish pancreas affected by deficiency of Hedgehog signaling. Gene Expr Patterns 2021; 41:119185. [PMID: 34087472 DOI: 10.1016/j.gep.2021.119185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
The pancreas development depends on complex regulation of several signaling pathways, including the Hedgehog (Hh) signaling via a receptor complex component, Smoothened, which deficiency blocks the Hh signaling. Such a defect in birds and mammals results in an annular pancreas. We showed that in developing zebrafish, the mutation of Smoothened or inhibition of Hh signaling by its antagonist cyclopamine caused developmental defects of internal organs, liver, pancreas, and gut. In particular, the pancreatic primordium was duplicated. The two exocrine pancreatic primordia surround the gut. This phenomenon correlates with a significant reduction of the gut's diameter, causing the annular pancreas phenotype.
Collapse
Affiliation(s)
- Svitlana Korzh
- -Department of Biological Sciences, National University of Singapore, Singapore
| | - Cecilia L Winata
- -International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Zhiyuan Gong
- -Department of Biological Sciences, National University of Singapore, Singapore.
| | - Vladimir Korzh
- -International Institute of Molecular and Cell Biology in Warsaw, Poland; -Institute of Molecular and Cell Biology, Singapore.
| |
Collapse
|
4
|
Evidence from oyster suggests an ancient role for Pdx in regulating insulin gene expression in animals. Nat Commun 2021; 12:3117. [PMID: 34035261 PMCID: PMC8149454 DOI: 10.1038/s41467-021-23216-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hox and ParaHox genes encode transcription factors with similar expression patterns in divergent animals. The Pdx (Xlox) homeobox gene, for example, is expressed in a sharp spatial domain in the endodermal cell layer of the gut in chordates, echinoderms, annelids and molluscs. The significance of comparable gene expression patterns is unclear because it is not known if downstream transcriptional targets are also conserved. Here, we report evidence indicating that a classic transcriptional target of Pdx1 in vertebrates, the insulin gene, is a likely direct target of Pdx in Pacific oyster adults. We show that one insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue. Transcriptomic comparison suggests that this tissue plays a similar role to the vertebrate pancreas. Using ATAC-seq and ChIP, we identify an upstream regulatory element of the cgILP gene which shows binding interaction with cgPdx protein in oyster hepatopancreas and demonstrate, using a cell culture assay, that the oyster Pdx can act as a transcriptional activator through this site, possibly in synergy with NeuroD. These data argue that a classic homeodomain-target gene interaction dates back to the origin of Bilateria. In vertebrates insulin is a direct transcriptional target of Pdx: the same is true in Pacific oysters and the authors show insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue, showing this gene interaction dates back to the origin of Bilateria.
Collapse
|
5
|
Beheiry RR, Salem HF, Karkit MW. Ultrastructural studies on the pancreatic acini in duck (Anas boscas) and pigeon (Columba livia). Anat Histol Embryol 2020; 49:345-350. [PMID: 32017197 DOI: 10.1111/ahe.12533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/11/2019] [Accepted: 01/04/2020] [Indexed: 11/26/2022]
Abstract
The aim of this research work was to study the histological structure of the pancreatic acini by transmission electron microscope in two avian species, duck and pigeon. The specimens were collected and processed for electron microscopic study. The results showed that the acini of the two avian species were two types; the first one was an electron dense and the second one an electron lucent. The light acinar cells were larger in size than the dark cells. These cells contained centrally located ovoid nuclei with prominent nucleoli and abundant euchromatin. The cytoplasm was electron lucent, with many rough endoplasmic reticulum, polymorphic mitochondria. Numerous zymogen granules were distributed in the basal part and around the nucleus, so these cells considered active cells. The dark acinar cells were characterized by an electron dense cytoplasm. The most prominent cell organelle in these cells were the zymogen granules that appeared in different sizes while other organelles as mitochondria, and rough endoplasmic reticulum were inconspicuous or few, so these cells were considered as inactive cells. The nucleus with indented nuclear membrane located centrally with prominent nucleoli and abundant heterochromatin. Prominent intercellular spaces between the individual acinar cells, as well as well-developed basement membrane separating the electron dense cells and the lumen contained the secretion between acinar cells. It could be concluded that the acinar cells in ducks and pigeons were divided into two types, that is, light and dark acinar cells which mainly attributed to the activity of these cells.
Collapse
Affiliation(s)
- Rasha Ragab Beheiry
- Department of Histology & Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hoda Foad Salem
- Department of Histology & Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mayada Wahid Karkit
- Department of Chemistry and Zoology, Faculty of Science, Menoufia University, Menoufia, Egypt
| |
Collapse
|
6
|
Beheiry RR, Abdel-Raheem WAA, Balah AM, Salem HF, Karkit MW. Morphological, histological and ultrastructural studies on the exocrine pancreas of goose. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Yilmaz A, Hagberg L. Exocrine pancreatic insufficiency is common in people living with HIV on effective antiretroviral therapy. Infect Dis (Lond) 2017; 50:193-199. [PMID: 28838283 DOI: 10.1080/23744235.2017.1370126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES The primary aim of this prospective study was to determine the prevalence of exocrine pancreatic insufficiency (EPI) in people living with HIV (PLHIV) on suppressive antiretroviral therapy (ART). METHODS PLHIV ≥18 years of age and on ART for >6 months and with HIV RNA <50 copies/mL plasma were included. Faecal elastase-1 measurement was performed on a single stool sample, serum markers of malnutrition were collected, and participants answered a short questionnaire about gastrointestinal symptoms. Participants with EPI and symptoms were offered pancreatic enzyme replacement therapy (PERT), and the result of this therapy was also evaluated. RESULTS Of 100 participants, 32% had EPI (faecal elastase-1 < 200 μg/g) and 20% severe EPI (faecal elastase-1 < 100 μg/g). We did not find any correlation between self-reported symptoms and degree of EPI. Twelve out of the 32 participants with EPI accepted to start PERT. Nine out of 12 (75%) reported improvement or became asymptomatic within 14 days. CONCLUSION EPI is common in PLHIV on effective ART. We could, however, not find a correlation between gastrointestinal symptoms and the presence of EPI. Assessment of pancreatic exocrine function could be considered in PLHIV particularly in those with gastrointestinal discomfort, since there is a possible gain in treating them with relief of symptoms and improved quality of life. The effects of PERT in PLHIV on effective ART need further study.
Collapse
Affiliation(s)
- Aylin Yilmaz
- a Department of Infectious Diseases , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Lars Hagberg
- a Department of Infectious Diseases , Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
8
|
Kowalska M, Hermyt M, Rupik W. Three-dimensional reconstruction of the embryonic pancreas in the grass snake Natrix natrix L. (Lepidosauria, Serpentes) based on histological studies. ZOOLOGY 2017; 121:91-110. [DOI: 10.1016/j.zool.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 09/27/2016] [Accepted: 11/10/2016] [Indexed: 01/08/2023]
|
9
|
Perillo M, Wang YJ, Leach SD, Arnone MI. A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva. BMC Evol Biol 2016; 16:117. [PMID: 27230062 PMCID: PMC4880809 DOI: 10.1186/s12862-016-0686-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Background Digestive cells are present in all metazoans and provide the energy necessary for the whole organism. Pancreatic exocrine cells are a unique vertebrate cell type involved in extracellular digestion of a wide range of nutrients. Although the organization and regulation of this cell type is intensively studied in vertebrates, its evolutionary history is still unknown. In order to understand which are the elements that define the pancreatic exocrine phenotype, we have analyzed the expression of genes that contribute to specification and function of this cell-type in an early branching deuterostome, the sea urchin Strongylocentrotus purpuratus. Results We defined the spatial and temporal expression of sea urchin orthologs of pancreatic exocrine genes and described a unique population of cells clustered in the upper stomach of the sea urchin embryo where exocrine markers are co-expressed. We used a combination of perturbation analysis, drug and feeding experiments and found that in these cells of the sea urchin embryo gene expression and gene regulatory interactions resemble that of bona fide pancreatic exocrine cells. We show that the sea urchin Ptf1a, a key transcriptional activator of digestive enzymes in pancreatic exocrine cells, can substitute for its vertebrate ortholog in activating downstream genes. Conclusions Collectively, our study is the first to show with molecular tools that defining features of a vertebrate cell-type, the pancreatic exocrine cell, are shared by a non-vertebrate deuterostome. Our results indicate that the functional cell-type unit of the vertebrate pancreas may evolutionarily predate the emergence of the pancreas as a discrete organ. From an evolutionary perspective, these results encourage to further explore the homologs of other vertebrate cell-types in traditional or newly emerging deuterostome systems. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0686-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Margherita Perillo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, 80121, Italy.,Present address: Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Yue Julia Wang
- Department of Surgery and the McKusick Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Steven D Leach
- Department of Surgery and the McKusick Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, 80121, Italy.
| |
Collapse
|
10
|
Kofent J, Spagnoli FM. Xenopus as a model system for studying pancreatic development and diabetes. Semin Cell Dev Biol 2016; 51:106-16. [PMID: 26806634 DOI: 10.1016/j.semcdb.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/06/2016] [Indexed: 02/07/2023]
Abstract
Diabetes is a chronic disease caused by the loss or dysfunction of the insulin-producing β-cells in the pancreas. To date, much of our knowledge about β-cells in humans comes from studying rare monogenic forms of diabetes. Importantly, the majority of mutations so far associated to monogenic diabetes are in genes that exert a regulatory role in pancreatic development and/or β-cell function. Thus, the identification and study of novel mutations open an unprecedented window into human pancreatic development. In this review, we summarize major advances in the genetic dissection of different types of monogenic diabetes and the insights gained from a developmental perspective. We highlight future challenges to bridge the gap between the fast accumulation of genetic data through next-generation sequencing and the need of functional insights into disease mechanisms. Lastly, we discuss the relevance and advantages of studying candidate gene variants in vivo using the Xenopus as model system.
Collapse
Affiliation(s)
- Julia Kofent
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany
| | - Francesca M Spagnoli
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, D-13125 Berlin, Germany.
| |
Collapse
|
11
|
Lecroisey C, Le Pétillon Y, Escriva H, Lammert E, Laudet V. Identification, evolution and expression of an insulin-like peptide in the cephalochordate Branchiostoma lanceolatum. PLoS One 2015; 10:e0119461. [PMID: 25774519 PMCID: PMC4361685 DOI: 10.1371/journal.pone.0119461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/16/2015] [Indexed: 01/24/2023] Open
Abstract
Insulin is one of the most studied proteins since it is central to the regulation of carbohydrate and fat metabolism in vertebrates and its expression and release are disturbed in diabetes, the most frequent human metabolic disease worldwide. However, the evolution of the function of the insulin protein family is still unclear. In this study, we present a phylogenetic and developmental analysis of the Insulin Like Peptide (ILP) in the cephalochordate amphioxus. We identified an ILP in the European amphioxus Branchiostoma lanceolatum that displays structural characteristics of both vertebrate insulin and Insulin-like Growth Factors (IGFs). Our phylogenetic analysis revealed that amphioxus ILP represents the sister group of both vertebrate insulin and IGF proteins. We also characterized both temporal and spatial expression of ILP in amphioxus. We show that ilp is highly expressed in endoderm and paraxial mesoderm during development, and mainly expressed in the gut of both the developing embryo and adult. We hypothesize that ILP has critical implications in both developmental processes and metabolism and could display IGF- and insulin-like functions in amphioxus supporting the idea of a common ancestral protein.
Collapse
Affiliation(s)
- Claire Lecroisey
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon, Lyon, France
| | - Yann Le Pétillon
- CNRS, UMR 7232, BIOM, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Hector Escriva
- CNRS, UMR 7232, BIOM, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
12
|
Piciucchi M, Capurso G, Archibugi L, Delle Fave MM, Capasso M, Delle Fave G. Exocrine pancreatic insufficiency in diabetic patients: prevalence, mechanisms, and treatment. Int J Endocrinol 2015; 2015:595649. [PMID: 25892991 PMCID: PMC4393909 DOI: 10.1155/2015/595649] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/28/2015] [Accepted: 03/09/2015] [Indexed: 02/07/2023] Open
Abstract
Pancreas is a doubled-entity organ, with both an exocrine and an endocrine component, reciprocally interacting in a composed system whose function is relevant for digestion, absorption, and homeostasis of nutrients. Thus, it is not surprising that disorders of the exocrine pancreas also affect the endocrine system and vice versa. It is well-known that patients with chronic pancreatitis develop a peculiar form of diabetes (type III), caused by destruction and fibrotic injury of islet cells. However, less is known on the influence of diabetes on pancreatic exocrine function. Pancreatic exocrine insufficiency (PEI) has been reported to be common in diabetics, with a prevalence widely ranging, in different studies, in both type I (25-74%) and type II (28-54%) diabetes. A long disease duration, high insulin requirement, and poor glycemic control seem to be risk factors for PEI occurrence. The impact of pancreatic exocrine replacement therapy on glycemic, insulin, and incretins profiles has not been fully elucidated. The present paper is aimed at reviewing published studies investigating the prevalence of PEI in diabetic patients and factors associated with its occurrence.
Collapse
Affiliation(s)
- Matteo Piciucchi
- Digestive and Liver Disease Unit, S. Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Gabriele Capurso
- Digestive and Liver Disease Unit, S. Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
- *Gabriele Capurso:
| | - Livia Archibugi
- Digestive and Liver Disease Unit, S. Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Martina Maria Delle Fave
- Digestive and Liver Disease Unit, S. Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Marina Capasso
- Digestive and Liver Disease Unit, S. Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Gianfranco Delle Fave
- Digestive and Liver Disease Unit, S. Andrea Hospital, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
13
|
Bell GD, Reddy S, Sun X, Yang Y, Krissansen GW. Distribution of insulin mRNA transcripts within the human body. Biochem Biophys Res Commun 2014; 451:425-30. [DOI: 10.1016/j.bbrc.2014.07.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 07/31/2014] [Indexed: 11/27/2022]
|
14
|
Malouf GG, Job S, Paradis V, Fabre M, Brugières L, Saintigny P, Vescovo L, Belghiti J, Branchereau S, Faivre S, de Reyniès A, Raymond E. Transcriptional profiling of pure fibrolamellar hepatocellular carcinoma reveals an endocrine signature. Hepatology 2014; 59:2228-37. [PMID: 24443104 DOI: 10.1002/hep.27018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 01/14/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Fibrolamellar hepatocellular carcinoma (FLC) is a rare subtype of liver cancer occurring mostly in children and young adults. We have shown that FLC comprises two separate entities: pure (p-FLC) and mixed-FLC (m-FLC), differing in clinical presentation and course. We show that p-FLCs have a distinct gene expression signature different from that of m-FLCs, which have a signature similar to that of classical hepatocellular carcinomas. We found p-FLC profiles to be unique among 263 profiles related to diverse tumoral and nontumoral liver samples. We identified two distinct molecular subgroups of p-FLCs with different outcomes. Pathway analysis of p-FLCs revealed ERBB2 overexpression and an up-regulation of glycolysis, possibly leading to compensatory mitochondrial hyperplasia and oncocytic differentiation. Four of the sixteen genes most significantly overexpressed in p-FLCs were neuroendocrine genes: prohormone convertase 1 (PCSK1); neurotensin; delta/notch-like EGF repeat containing; and calcitonin. PCSK1 overexpression was validated by immunohistochemistry, yielding specific, diffuse staining of the protein throughout the cytoplasm, possibly corresponding to a functional form of this convertase. CONCLUSION p-FLCs have a unique transcriptomic signature characterized by the strong expression of specific neuroendocrine genes, suggesting that these tumors may have a cellular origin different from that of HCC. Our data have implications for the use of genomic profiling for diagnosis and selection of targeted therapies in patients with p-FLC.
Collapse
Affiliation(s)
- Gabriel G Malouf
- Department of Medical Oncology, Beaujon University Hospital and INSERM U728, Clichy, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A Triad of Congenital Diaphragmatic Hernia, Meckel's Diverticulum, and Heterotopic Pancreas. Case Rep Pediatr 2014; 2014:725945. [PMID: 24804135 PMCID: PMC3996881 DOI: 10.1155/2014/725945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/06/2014] [Indexed: 11/26/2022] Open
Abstract
Congenital diaphragmatic hernia is a common developmental anomaly encountered by paediatric surgeons. It is known to be associated with extradiaphragmatic malformations, which include cardiac, renal, genital, and chromosomal abnormalities. Herein, we report a newborn born with concurrent congenital diaphragmatic hernia, Meckel's diverticulum, and heterotopic pancreatic tissue. This is the first case report of such a triad with description of possible mechanisms of the development.
Collapse
|
16
|
Southan C, Hancock JM. A tale of two drug targets: the evolutionary history of BACE1 and BACE2. Front Genet 2013; 4:293. [PMID: 24381583 PMCID: PMC3865767 DOI: 10.3389/fgene.2013.00293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 11/29/2013] [Indexed: 11/22/2022] Open
Abstract
The beta amyloid (APP) cleaving enzyme (BACE1) has been a drug target for Alzheimer's Disease (AD) since 1999 with lead inhibitors now entering clinical trials. In 2011, the paralog, BACE2, became a new target for type II diabetes (T2DM) having been identified as a TMEM27 secretase regulating pancreatic β cell function. However, the normal roles of both enzymes are unclear. This study outlines their evolutionary history and new opportunities for functional genomics. We identified 30 homologs (UrBACEs) in basal phyla including Placozoans, Cnidarians, Choanoflagellates, Porifera, Echinoderms, Annelids, Mollusks and Ascidians (but not Ecdysozoans). UrBACEs are predominantly single copy, show 35-45% protein sequence identity with mammalian BACE1, are ~100 residues longer than cathepsin paralogs with an aspartyl protease domain flanked by a signal peptide and a C-terminal transmembrane domain. While multiple paralogs in Trichoplax and Monosiga pre-date the nervous system, duplication of the UrBACE in fish gave rise to BACE1 and BACE2 in the vertebrate lineage. The latter evolved more rapidly as the former maintained the emergent neuronal role. In mammals, Ka/Ks for BACE2 is higher than BACE1 but low ratios for both suggest purifying selection. The 5' exons show higher Ka/Ks than the catalytic section. Model organism genomes show the absence of certain BACE human substrates when the UrBACE is present. Experiments could thus reveal undiscovered substrates and roles. The human protease double-target status means that evolutionary trajectories and functional shifts associated with different substrates will have implications for the development of clinical candidates for both AD and T2DM. A rational basis for inhibition specificity ratios and assessing target-related side effects will be facilitated by a more complete picture of BACE1 and BACE2 functions informed by their evolutionary context.
Collapse
Affiliation(s)
- Christopher Southan
- IUPHAR Database and Guide to Pharmacology Web Portal Group, University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of EdinburghEdinburgh, UK
| | - John M. Hancock
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
| |
Collapse
|
17
|
Abstract
The nonneoplastic diseases of the human pancreas generally comprise the inflammatory and degenerative conditions that include acute and chronic pancreatitis, with cystic fibrosis being arguably one of the most important diseases that induce the condition. Both acute and chronic conditions vary in severity, but both can be life threatening; and because of this fact, the study of their progression, and their responsiveness to therapy, is largely conducted by indirect means using serum markers of damage and repair such as amylase and lipase activities that normally occur at very low levels in the circulation but can be significantly increased during inflammatory episodes. Progress in the understanding the pathogenesis of both conditions has therefore been largely due to time course studies in animal models of pancreatitis, and it is in this context that animal model development has been so significant. In general terms, the animal models can be divided into the invasive, surgical procedures, and those induced by the administration of chemical secretagogues that induce hypersecretion of the pancreatic enzymes. The former include ligation and/or cannulation of the biliopancreatic ducts with infusion of solutions of various kinds, or the formation of closed duodenal loops. Secretagogue administration includes administration of caerulein or l-arginine in various protocols. An additional model involves administration of dibutyltin dichloride, which induces a partial blockage of the pancreatic ducts to induce pancreatic disease through enzymic reflux into the gland. The models have been invaluable in generating testable hypotheses for the human diseases. These hypotheses for the production of cellular damage as the initiating events in the disease include (1) intracellular chemical activation, (2) pancreatic secretion reflux, (3) intracellular production of reactive oxygen species, and (4) intracellular production of free radicals.
Collapse
Affiliation(s)
- John R Foster
- 1AstraZeneca Pharmaceuticals, Cheshire, United Kingdom
| |
Collapse
|
18
|
Ainali C, Simon M, Freilich S, Espinosa O, Hazelwood L, Tsoka S, Ouzounis CA, Hancock JM. Protein coalitions in a core mammalian biochemical network linked by rapidly evolving proteins. BMC Evol Biol 2011; 11:142. [PMID: 21612628 PMCID: PMC3112093 DOI: 10.1186/1471-2148-11-142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 05/25/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cellular ATP levels are generated by glucose-stimulated mitochondrial metabolism and determine metabolic responses, such as glucose-stimulated insulin secretion (GSIS) from the β-cells of pancreatic islets. We describe an analysis of the evolutionary processes affecting the core enzymes involved in glucose-stimulated insulin secretion in mammals. The proteins involved in this system belong to ancient enzymatic pathways: glycolysis, the TCA cycle and oxidative phosphorylation. RESULTS We identify two sets of proteins, or protein coalitions, in this group of 77 enzymes with distinct evolutionary patterns. Members of the glycolysis, TCA cycle, metabolite transport, pyruvate and NADH shuttles have low rates of protein sequence evolution, as inferred from a human-mouse comparison, and relatively high rates of evolutionary gene duplication. Respiratory chain and glutathione pathway proteins evolve faster, exhibiting lower rates of gene duplication. A small number of proteins in the system evolve significantly faster than co-pathway members and may serve as rapidly evolving adapters, linking groups of co-evolving genes. CONCLUSIONS Our results provide insights into the evolution of the involved proteins. We find evidence for two coalitions of proteins and the role of co-adaptation in protein evolution is identified and could be used in future research within a functional context.
Collapse
Affiliation(s)
- Chrysanthi Ainali
- Centre for Bioinformatics, Department of Informatics, School of Natural and Mathematical Sciences, King's College London, Strand, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Augmenter of liver regeneration causes different kinetics of ERK1/2 and Akt/PKB phosphorylation than EGF and induces hepatocyte proliferation in an EGF receptor independent and liver specific manner. Biochem Biophys Res Commun 2010; 394:915-20. [DOI: 10.1016/j.bbrc.2010.03.074] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 01/20/2023]
|
20
|
Adams G, Buttery L, Stolnik S, Morris G, Harding S, Wang N. Stem cells: The therapeutic role in the treatment of diabetes mellitus. Biotechnol Genet Eng Rev 2010; 27:285-304. [PMID: 21415902 DOI: 10.1080/02648725.2010.10648154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The unlimited proliferative ability and plasticity to generate other cell types ensures that stem cells represent a dynamic system apposite for the identification of new molecular targets and the production and development of novel drugs. These cell lines derived from embryos could be used as a model for the study of basic and applied aspects in medical therapeutics, environmental mutagenesis and disease management. As a consequence, these can be tested for safety or to predict or anticipate potential toxicity in humans. Human ES cell lines may, therefore, prove clinically relevant to the development of safer and more effective drugs for patients presenting with diabetes mellitus.
Collapse
Affiliation(s)
- Gary Adams
- University of Nottingham, Faculty of Medicine and Health Sciences, Insulin Diabetes Experimental Research Group, Clifton Boulevard, Nottingham, UK.
| | | | | | | | | | | |
Collapse
|
21
|
Pearl EJ, Bilogan CK, Mukhi S, Brown DD, Horb ME. Xenopus pancreas development. Dev Dyn 2009; 238:1271-86. [PMID: 19334283 DOI: 10.1002/dvdy.21935] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Understanding how the pancreas develops is vital to finding new treatments for a range of pancreatic diseases, including diabetes and pancreatic cancer. Xenopus is a relatively new model organism for the elucidation of pancreas development, and has already made contributions to the field. Recent studies have shown benefits of using Xenopus for understanding both early patterning and lineage specification aspects of pancreas organogenesis. This review focuses specifically on Xenopus pancreas development, and covers events from the end of gastrulation, when regional specification of the endoderm is occurring, right through metamorphosis, when the mature pancreas is fully formed. We have attempted to cover pancreas development in Xenopus comprehensively enough to assist newcomers to the field and also to enable those studying pancreas development in other model organisms to better place the results from Xenopus research into the context of the field in general and their studies specifically. Developmental Dynamics 238:1271-1286, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Esther J Pearl
- Laboratory of Molecular Organogenesis, Institut de Recherches Cliniques de Montréal, Montréal, QC Canada
| | | | | | | | | |
Collapse
|
22
|
Hayden MR, Patel K, Habibi J, Gupta D, Tekwani SS, Whaley-Connell A, Sowers JR. Attenuation of endocrine-exocrine pancreatic communication in type 2 diabetes: pancreatic extracellular matrix ultrastructural abnormalities. ACTA ACUST UNITED AC 2009; 3:234-43. [PMID: 19040593 DOI: 10.1111/j.1559-4572.2008.00024.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ultrastructural observations reveal a continuous interstitial matrix connection between the endocrine and exocrine pancreas, which is lost due to fibrosis in rodent models and humans with type 2 diabetes mellitus (T2DM). Widening of the islet-exocrine interface appears to result in loss of desmosomes and adherens junctions between islet and acinar cells and is associated with hypercellularity consisting of pericytes and inflammatory cells in T2DM pancreatic tissue. Organized fibrillar collagen was closely associated with pericytes, which are known to differentiate into myofibroblasts-pancreatic stellate cells. Of importance, some pericyte cellular processes traverse both the connecting islet-exocrine interface and the endoacinar interstitium of the exocrine pancreas. Loss of cellular paracrine communication and extracellular matrix remodeling fibrosis in young animal models and humans may result in a dysfunctional insulino-acinar-ductal-incretin gut hormone axis, resulting in pancreatic insufficiency and glucagon-like peptide deficiency, which are known to exist in prediabetes and overt T2DM in humans.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, MO 65121-0001, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Tadokoro H, Takase M, Nobukawa B. Unusual fusion between ventral and dorsal primordia causes anomalous pancreaticobiliary junction. Pathol Int 2008; 58:498-502. [PMID: 18705770 DOI: 10.1111/j.1440-1827.2008.02263.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anomalous pancreaticobiliary junction (APBJ) is a congenital anomaly in which the pancreatic duct joins the common bile duct proximal to the sphincter of Oddi. Anatomical and immunohistochemical examination of the pancreas with APBJ has rarely been performed. A 72-year-old woman with gallbladder cancer and APBJ died of respiratory failure. Macroscopic features of the pancreas were examined in detail. Immunohistochemistry using anti-pancreatic polypeptide (anti-PP) antibody was done to discriminate ventral and dorsal pancreas. Macroscopically the inferior part of the head of the pancreas was smaller than normal. The posterior surface of the head was obliquely grooved. Part of the pancreatic head protruded into the posterior side of the pancreatic head. A PP-rich region was located in the superioposterior position of the pancreas head. Considering the relationship between the ventral and dorsal pancreas, it was inferred that the ventral primordium could obliquely fuse with the dorsal primordium during embryological development. As a result, APBJ occurs through an abnormal fusion between ventral and dorsal primordia.
Collapse
Affiliation(s)
- Hiroyuki Tadokoro
- Department of Gastroenterology, Juntendo Tokyo Koto Geriatric Medical Center, Shinsuna, Koto-ku, Tokyo, Japan.
| | | | | |
Collapse
|