1
|
Zhou R, Pan J, Zhang WB, Li XD. Myosin-5a facilitates stress granule formation by interacting with G3BP1. Cell Mol Life Sci 2024; 81:430. [PMID: 39387926 PMCID: PMC11467138 DOI: 10.1007/s00018-024-05468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Stress granules (SGs) are non-membranous organelles composed of mRNA and proteins that assemble in the cytosol when the cell is under stress. Although the composition of mammalian SGs is both cell-type and stress-dependent, they consistently contain core components, such as Ras GTPase activating protein SH3 domain binding protein 1 (G3BP1). Upon stress, living cells rapidly assemble micrometric SGs, sometimes within a few minutes, suggesting that SG components may be actively transported by the microtubule and/or actin cytoskeleton. Indeed, SG assembly has been shown to depend on the microtubule cytoskeleton and the associated motor proteins. However, the role of the actin cytoskeleton and associated myosin motor proteins remains controversial. Here, we identified G3BP1 as a novel binding protein of unconventional myosin-5a (Myo5a). G3BP1 uses its C-terminal RNA-binding domain to interact with the middle portion of Myo5a tail domain (Myo5a-MTD). Suppressing Myo5a function in mammalian cells, either by overexpressing Myo5a-MTD, eliminating Myo5a gene expression, or treatment with myosin-5 inhibitor, inhibits the arsenite-induced formation of both small and large SGs. This is different from the effect of microtubule disruption, which abolishes the formation of large SGs but enhances the formation of small SGs under stress conditions. We therefore propose that, under stress conditions, Myo5a facilitates the formation of SGs at an earlier stage than the microtubule-dependent process.
Collapse
Affiliation(s)
- Rui Zhou
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiabin Pan
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen-Bo Zhang
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang-Dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Abu Ghedda S, Alkadamani S, Sabouni R, Mahmoud J. Griscelli syndrome: a diagnostic challenge of a rare disease: a case report. Ann Med Surg (Lond) 2024; 86:6164-6168. [PMID: 39359785 PMCID: PMC11444549 DOI: 10.1097/ms9.0000000000002462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/30/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Griscelli syndrome (GS) is a rare autosomal recessive genetic disorder that primarily manifests as hair and skin hypopigmentation, with three types differentiated by their specific genetic defects as well as by their clinical features. Clinically, GS type 1 is characterized by early neurological alterations, while GS type 2 is characterized by immunodeficiency and could present with neurological symptoms, and type 3 is characterized by a chromosomal anomaly without a specific clinical profile besides hypopigmentation. This article details the challenges faced in the diagnosis of a patient with GS who presents with neurological symptoms followed by immunological deficits. Case presentation A 7-month-old female presented with complaints of developmental delay following an otitis media infection. Upon examination, she exhibited signs of psychomotor developmental regression and had pale bronze skin and silvery-gray hair, as well as hepatosplenomegaly. The examination of her hair shaft revealed a pattern consistent with GS. During her hospitalization, the patient developed an intermittent fever and signs of hemophagocytic lymphohistiocytosis (HLH). She subsequently developed recurrent seizures treated with phenytoin and Aciclovir. Shortly she succumbed to respiratory distress syndrome and multisystem failure. Discussion The presence of HLH confirms the type of GS. However, in some cases, the HLH criteria could not be fulfilled, presenting a diagnostic challenge. Conclusion The genetic examination is the only way to differentiate GS type 1 from type 2. However, when it is not available, the presence of specific symptoms and features may assist in the classification. Furthermore, treatments should be administered when GS type 2 is suspected since they have the potential to improve life quality through treating HLH, delaying and altering the neurological symptoms.
Collapse
Affiliation(s)
| | | | | | - Jaber Mahmoud
- Department of Gastroenterology & Interventional Endoscopy Pediatric, Damascus University, Pediatric Hospital and Syrian Specialty Hospital, Damascus, Syria
| |
Collapse
|
3
|
Furuyama W, Yamada K, Sakaguchi M, Marzi A, Nanbo A. Marburg virus exploits the Rab11-mediated endocytic pathway in viral-particle production. Microbiol Spectr 2024; 12:e0026924. [PMID: 39078193 PMCID: PMC11370620 DOI: 10.1128/spectrum.00269-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Filoviruses produce viral particles with characteristic filamentous morphology. The major viral matrix protein, VP40, is trafficked to the plasma membrane and promotes viral particle formation and subsequent viral egress. In the present study, we assessed the role of the small GTPase Rab11-mediated endocytic pathway in Marburg virus (MARV) particle formation and budding. Although Rab11 was predominantly localized in the perinuclear region, it exhibited a more diffuse distribution in the cytoplasm of cells transiently expressing MARV VP40. Rab11 was incorporated into MARV-like particles. Expression of the dominant-negative form of Rab11 and knockdown of Rab11 decreased the amount of VP40 fractions in the cell periphery. Moreover, downregulation of Rab11 moderately reduced the release of MARV-like particles and authentic MARV. We further demonstrated that VP40 induces the distribution of the microtubule network toward the cell periphery, which was partly associated with Rab11. Depolymerization of microtubules reduced the accumulation of VP40 in the cell periphery along with viral particle formation. VP40 physically interacted with α-tubulin, a major component of microtubules, but not with Rab11. Taken together, these results suggested that VP40 partly interacts with microtubules and facilitates their distribution toward the cell periphery, leading to the trafficking of transiently tethering Rab11-positive vesicles toward the cell surface. As we previously demonstrated the role of Rab11 in the formation of Ebola virus particles, the results here suggest that filoviruses in general exploit the vesicle-trafficking machinery for proper virus-particle formation and subsequent egress. These pathways may be a potential target for the development of pan-filovirus therapeutics.IMPORTANCEFiloviruses, including Marburg and Ebola viruses, produce distinct filamentous viral particles. Although it is well known that the major viral matrix protein of these viruses, VP40, is trafficked to the cell surface and promotes viral particle production, details regarding the associated molecular mechanisms remain unclear. To address this knowledge gap, we investigated the role of the small GTPase Rab11-mediated endocytic pathway in this process. Our findings revealed that Marburg virus exploits the Rab11-mediated vesicle-trafficking pathway for the release of virus-like particles and authentic virions in a microtubule network-dependent manner. Previous findings demonstrated that Rab11 is also involved in Ebola virus-particle production. Taken together, these data suggest that filoviruses, in general, may hijack the microtubule-dependent vesicle-trafficking machinery for productive replication. Therefore, this pathway presents as a potential target for the development of pan-filovirus therapeutics.
Collapse
Affiliation(s)
- Wakako Furuyama
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Kento Yamada
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Asuka Nanbo
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Walcott S, Warshaw DM. Modeling myosin Va liposome transport through actin filament networks reveals a percolation threshold that modulates transport properties. Mol Biol Cell 2021; 33:ar18. [PMID: 34935414 PMCID: PMC9236151 DOI: 10.1091/mbc.e21-08-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myosin Va (myoVa) motors transport membrane-bound cargo through three-dimensional, intracellular actin filament networks. We developed a coarse-grained, in silico model to predict how actin filament density (3-800 filaments) within a randomly oriented actin network affects fluid-like liposome (350 nm vs. 1750 nm) transport by myoVa motors. Five thousand simulated liposomes transported within each network adopted one of three states: transport, tug-of-war, or diffusion. Diffusion due to liposome detachment from actin rarely occurred given at least 10 motors on the liposome surface. However, with increased actin density, liposomes transitioned from primarily directed transport on single actin filaments to an apparent random walk, resulting from a mixture of transport and tug-of-wars as the probability of encountering additional actin filaments increased. This phase transition arises from a percolation phase transition at a critical number of accessible actin filaments, Nc. Nc is a geometric property of the actin network that depends only on the position and polarity of the actin filaments, transport distance, and the liposome diameter, as evidenced by a fivefold increase in liposome diameter resulting in a fivefold decrease in Nc. Thus in cells, actin network density and cargo size may be regulated to match cargo delivery to the cell’s physiological demands.
Collapse
Affiliation(s)
- S Walcott
- Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609
| | - D M Warshaw
- Molecular Physiology and Biophysics, University of Vermont, Health Science Research Facility, 149 Beaumont Avenue, Burlington, VT 05405
| |
Collapse
|
5
|
Gajawada P, Cetinkaya A, von Gerlach S, Kubin N, Burger H, Näbauer M, Grinninger C, Rolf A, Schönburg M, Choi YH, Kubin T, Richter M. Myocardial Accumulations of Reg3A, Reg3γ and Oncostatin M Are Associated with the Formation of Granulomata in Patients with Cardiac Sarcoidosis. Int J Mol Sci 2021; 22:ijms22084148. [PMID: 33923774 PMCID: PMC8072627 DOI: 10.3390/ijms22084148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac sarcoidosis (CS) is a poorly understood disease and is characterized by the focal accumulation of immune cells, thus leading to the formation of granulomata (GL). To identify the developmental principles of fatal GL, fluorescence microscopy and Western blot analysis of CS and control patients is presented here. CS is visualized macroscopically by positron emission tomography (PET)/ computed tomography (CT). A battery of antibodies is used to determine structural, cell cycle and inflammatory markers. GL consist of CD68+, CD163+ and CD206+ macrophages surrounded by T-cells within fibrotic areas. Cell cycle markers such as phospho-histone H3, phospho-Aurora and Ki67 were moderately present; however, the phosphorylated ERM (ezrin, radixin and moesin) and Erk1/2 proteins, strong expression of the myosin motor protein and the macrophage transcription factor PU.1 indicate highly active GL. Mild apoptosis is consistent with PI3 kinase and Akt activation. Massive amounts of the IL-1R antagonist reflect a mild activation of stress and inflammatory pathways in GL. High levels of oncostatin M and the Reg3A and Reg3γ chemokines are in accordance with macrophage accumulation in areas of remodeling cardiomyocytes. We conclude that the formation of GL occurs mainly through chemoattraction and less by proliferation of macrophages. Furthermore, activation of the oncostatin/Reg3 axis might help at first to wall-off substances but might initiate the chronic development of heart failure.
Collapse
Affiliation(s)
- Praveen Gajawada
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
| | - Ayse Cetinkaya
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany;
| | - Susanne von Gerlach
- Universitätsklinikum Giessen und Marburg GmbH, Standort Marburg, Baldingerstr., 35033 Marburg, Germany;
| | - Natalia Kubin
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
| | - Heiko Burger
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany;
| | - Michael Näbauer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistr. 15, 81377 Munich, Germany; (M.N.); (C.G.)
| | - Carola Grinninger
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Marchioninistr. 15, 81377 Munich, Germany; (M.N.); (C.G.)
| | - Andreas Rolf
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany;
- Department of Cardiology, Kerckhoff Heart and Lung Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany
| | - Markus Schönburg
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany;
| | - Yeong-Hoon Choi
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site RhineMain, 60549 Frankfurt/Main, Germany
- Correspondence: (Y.-H.C.); (T.K.); (M.R.)
| | - Thomas Kubin
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
- Correspondence: (Y.-H.C.); (T.K.); (M.R.)
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff Heart Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany; (P.G.); (A.C.); (N.K.); (H.B.); (M.S.)
- Campus Kerckhoff, Justus-Liebig-University Giessen, 61231 Bad Nauheim, Germany;
- Correspondence: (Y.-H.C.); (T.K.); (M.R.)
| |
Collapse
|
6
|
Control of Cytoskeletal Dynamics by β-Arrestin1/Myosin Vb Signaling Regulates Endosomal Sorting and Scavenging Activity of the Atypical Chemokine Receptor ACKR2. Vaccines (Basel) 2020; 8:vaccines8030542. [PMID: 32957704 PMCID: PMC7565953 DOI: 10.3390/vaccines8030542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
The atypical chemokine receptor ACKR2, formerly named D6, is a scavenger chemokine receptor with a non-redundant role in the control of inflammation and immunity. The scavenging activity of ACKR2 depends on its trafficking properties, which require actin cytoskeleton rearrangements downstream of a β-arrestin1-Rac1-PAK1-LIMK1-cofilin-dependent signaling pathway. We here demonstrate that in basal conditions, ACKR2 trafficking properties require intact actin and microtubules networks. The dynamic turnover of actin filaments is required to sustain ACKR2 constitutive endocytosis, while both actin and microtubule networks are involved in processes regulating ACKR2 constitutive sorting to rapid, Rab4-dependent and slow, Rab11-dependent recycling pathways, respectively. After chemokine engagement, ACKR2 requires myosin Vb activity to promote its trafficking from Rab11-positive recycling endosomes to the plasma membrane, which sustains its scavenging activity. Other than cofilin phosphorylation, induction of the β-arrestin1-dependent signaling pathway by ACKR2 agonists also leads to the rearrangement of microtubules, which is required to support the myosin Vb-dependent ACKR2 upregulation and its scavenging properties. Disruption of the actin-based cytoskeleton by the apoptosis-inducing agent staurosporine results in impaired ACKR2 internalization and chemokine degradation that is consistent with the emerging scavenging-independent activity of the receptor in apoptotic neutrophils instrumental for promoting efficient efferocytosis during the resolution of inflammation. In conclusion, we provide evidence that ACKR2 activates a β-arrestin1-dependent signaling pathway, triggering both the actin and the microtubule cytoskeletal networks, which control its trafficking and scavenger properties.
Collapse
|
7
|
Jiang M, Paniagua AE, Volland S, Wang H, Balaji A, Li DG, Lopes VS, Burgess BL, Williams DS. Microtubule motor transport in the delivery of melanosomes to the actin-rich apical domain of the retinal pigment epithelium. J Cell Sci 2020; 133:jcs242214. [PMID: 32661088 PMCID: PMC7420818 DOI: 10.1242/jcs.242214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Melanosomes are motile, light-absorbing organelles that are present in pigment cells of the skin and eye. It has been proposed that melanosome localization, in both skin melanocytes and the retinal pigment epithelium (RPE), involves melanosome capture from microtubule motors by an unconventional myosin, which dynamically tethers the melanosomes to actin filaments. Recent studies with melanocytes have questioned this cooperative capture model. Here, we test the model in RPE cells by imaging melanosomes associated with labeled actin filaments and microtubules, and by investigating the roles of different motor proteins. We found that a deficiency in cytoplasmic dynein phenocopies the lack of myosin-7a, in that melanosomes undergo fewer of the slow myosin-7a-dependent movements and are absent from the RPE apical domain. These results indicate that microtubule-based motility is required for the delivery of melanosomes to the actin-rich apical domain and support a capture mechanism that involves both microtubule and actin motors.
Collapse
Affiliation(s)
- Mei Jiang
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Antonio E Paniagua
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Stefanie Volland
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hongxing Wang
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Adarsh Balaji
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David G Li
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vanda S Lopes
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Barry L Burgess
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - David S Williams
- Departments of Ophthalmology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Dolce LG, Ohbayashi N, Silva DFD, Ferrari AJ, Pirolla RA, Schwarzer ACDA, Zanphorlin LM, Cabral L, Fioramonte M, Ramos CH, Gozzo FC, Fukuda M, Giuseppe POD, Murakami MT. Unveiling the interaction between the molecular motor Myosin Vc and the small GTPase Rab3A. J Proteomics 2020; 212:103549. [DOI: 10.1016/j.jprot.2019.103549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 01/07/2023]
|
9
|
Nanbo A, Ohba Y. Budding of Ebola Virus Particles Requires the Rab11-Dependent Endocytic Recycling Pathway. J Infect Dis 2019; 218:S388-S396. [PMID: 30476249 PMCID: PMC6249604 DOI: 10.1093/infdis/jiy460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The Ebola virus-encoded major matrix protein VP40 traffics to the plasma membrane, which leads to the formation of filamentous viral particles and subsequent viral egress. However, the cellular machineries underlying this process are not fully understood. In the present study, we have assessed the role of host endocytic recycling in Ebola virus particle formation. We found that a small GTPase Rab11, which regulates recycling of molecules among the trans-Golgi network, recycling endosomes, and the plasma membrane, was incorporated in Ebola virus-like particles. Although Rab11 predominantly localized in the perinuclear region, it distributed diffusely in the cytoplasm and partly localized in the periphery of the cells transiently expressing VP40. In contrast, Rab11 exhibited a perinuclear distribution when 2 VP40 derivatives that lack ability to traffic to the plasma membrane were expressed. Finally, expression of a dominant-negative form of Rab11 or knockdown of Rab11 inhibited both VP40-induced clusters at the plasma membrane and release of viral-like particles. Taken together, our findings demonstrate that Ebola virus exploits host endocytic recycling machinery to facilitate the trafficking of VP40 to the cell surface and the subsequent release of viral-like particles for its establishment of efficient viral egress.
Collapse
Affiliation(s)
- Asuka Nanbo
- Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Ohba
- Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
EhFP10: A FYVE family GEF interacts with myosin IB to regulate cytoskeletal dynamics during endocytosis in Entamoeba histolytica. PLoS Pathog 2019; 15:e1007573. [PMID: 30779788 PMCID: PMC6396940 DOI: 10.1371/journal.ppat.1007573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/01/2019] [Accepted: 01/08/2019] [Indexed: 01/07/2023] Open
Abstract
Motility and phagocytosis are key processes that are involved in invasive amoebiasis disease caused by intestinal parasite Entamoeba histolytica. Previous studies have reported unconventional myosins to play significant role in membrane based motility as well as endocytic processes. EhMyosin IB is the only unconventional myosin present in E. histolytica, is thought to be involved in both of these processes. Here, we report an interaction between the SH3 domain of EhMyosin IB and c-terminal domain of EhFP10, a Rho guanine nucleotide exchange factor. EhFP10 was found to be confined to Entamoeba species only, and to contain a c-terminal domain that binds and bundles actin filaments. EhFP10 was observed to localize in the membrane ruffles, phagocytic and macropinocytic cups of E. histolytica trophozoites. It was also found in early pinosomes but not early phagosomes. A crystal structure of the c-terminal SH3 domain of EhMyosin IB (EhMySH3) in complex with an EhFP10 peptide and co-localization studies established the interaction of EhMySH3 with EhFP10. This interaction was shown to lead to inhibition of actin bundling activity and to thereby regulate actin dynamics during endocytosis. We hypothesize that unique domain architecture of EhFP10 might be compensating the absence of Wasp and related proteins in Entamoeba, which are known partners of myosin SH3 domains in other eukaryotes. Our findings also highlights the role of actin bundling during endocytosis.
Collapse
|
11
|
Gicking AM, Swentowsky KW, Dawe RK, Qiu W. Functional diversification of the kinesin‐14 family in land plants. FEBS Lett 2018; 592:1918-1928. [DOI: 10.1002/1873-3468.13094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/24/2018] [Accepted: 05/05/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - R. Kelly Dawe
- Department of Plant Biology University of Georgia Athens GA USA
- Department of Genetics University of Georgia Athens GA USA
| | - Weihong Qiu
- Department of Physics Oregon State University Corvallis OR USA
| |
Collapse
|
12
|
Yoshida A, Sakai N, Uekusa Y, Imaoka Y, Itagaki Y, Suzuki Y, Yoshimura SH. Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis. PLoS Biol 2018; 16:e2004786. [PMID: 29723197 PMCID: PMC5953504 DOI: 10.1371/journal.pbio.2004786] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) proceeds through a series of morphological changes of the plasma membrane induced by a number of protein components. Although the spatiotemporal assembly of these proteins has been elucidated by fluorescence-based techniques, the protein-induced morphological changes of the plasma membrane have not been fully clarified in living cells. Here, we visualize membrane morphology together with protein localizations during CME by utilizing high-speed atomic force microscopy (HS-AFM) combined with a confocal laser scanning unit. The plasma membrane starts to invaginate approximately 30 s after clathrin starts to assemble, and the aperture diameter increases as clathrin accumulates. Actin rapidly accumulates around the pit and induces a small membrane swelling, which, within 30 s, rapidly covers the pit irreversibly. Inhibition of actin turnover abolishes the swelling and induces a reversible open–close motion of the pit, indicating that actin dynamics are necessary for efficient and irreversible pit closure at the end of CME. Cells communicate with their environments via the plasma membrane and various membrane proteins. Clathrin-mediated endocytosis (CME) plays a central role in such communication and proceeds with a series of multiprotein assembly, deformation of the plasma membrane, and production of a membrane vesicle that delivers extracellular signaling molecules into the cytoplasm. In this study, we utilized our home-built correlative imaging system comprising high-speed atomic force microscopy (HS-AFM) and confocal fluorescence microscopy to simultaneously image morphological changes of the plasma membrane and protein localization during CME in a living cell. The results revealed a tight correlation between the size of the pit and the amount of clathrin assembled. Actin dynamics play multiple roles in the assembly, maturation, and closing phases of the process, and affects membrane morphology, suggesting a close relationship between endocytosis and dynamic events at the cell cortex. Knock down of dynamin also affected the closing motion of the pit and showed functional correlation with actin.
Collapse
Affiliation(s)
- Aiko Yoshida
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | - Yuka Imaoka
- R&D Group, Olympus Corporation, Hachioji, Japan
| | | | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | | |
Collapse
|
13
|
Barua B, Sckolnick M, White HD, Trybus KM, Hitchcock-DeGregori SE. Distinct sites in tropomyosin specify shared and isoform-specific regulation of myosins II and V. Cytoskeleton (Hoboken) 2018; 75:150-163. [PMID: 29500902 PMCID: PMC5899941 DOI: 10.1002/cm.21440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/07/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022]
Abstract
Muscle contraction, cytokinesis, cellular movement, and intracellular transport depend on regulated actin-myosin interaction. Most actin filaments bind one or more isoform of tropomyosin, a coiled-coil protein that stabilizes the filaments and regulates interactions with other actin-binding proteins, including myosin. Isoform-specific allosteric regulation of muscle myosin II by actin-tropomyosin is well-established while that of processive myosins, such as myosin V, which transport organelles and macromolecules in the cell periphery, is less certain. Is the regulation by tropomyosin a universal mechanism, the consequence of the conserved periodic structures of tropomyosin, or is it the result of specialized interactions between particular isoforms of myosin and tropomyosin? Here, we show that striated muscle tropomyosin, Tpm1.1, inhibits fast skeletal muscle myosin II but not myosin Va. The non-muscle tropomyosin, Tpm3.1, in contrast, activates both myosins. To decipher the molecular basis of these opposing regulatory effects, we introduced mutations at conserved surface residues within the six periodic repeats (periods) of Tpm3.1, in positions homologous or analogous to those important for regulation of skeletal muscle myosin by Tpm1.1. We identified conserved residues in the internal periods of both tropomyosin isoforms that are important for the function of myosin Va and striated myosin II. Conserved residues in the internal and C-terminal periods that correspond to Tpm3.1-specific exons inhibit myosin Va but not myosin II function. These results suggest that tropomyosins may directly impact myosin function through both general and isoform-specific mechanisms that identify actin tracks for the recruitment and function of particular myosins.
Collapse
Affiliation(s)
- Bipasha Barua
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| | - Maria Sckolnick
- Department of Molecular Physiology & Biophysics University of Vermont, Burlington, VT 05405
| | - Howard D. White
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507
| | - Kathleen M. Trybus
- Department of Molecular Physiology & Biophysics University of Vermont, Burlington, VT 05405
| | - Sarah E. Hitchcock-DeGregori
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|
14
|
Tang W, Gao C, Wang J, Yin Z, Zhang J, Ji J, Zhang H, Zheng X, Zhang Z, Wang P. Disruption of actin motor function due to MoMyo5 mutation impairs host penetration and pathogenicity in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:689-699. [PMID: 28378891 PMCID: PMC5628116 DOI: 10.1111/mpp.12554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/13/2017] [Accepted: 03/27/2017] [Indexed: 05/20/2023]
Abstract
Actin motor myosin proteins are the driving forces behind the active transport of vesicles, and more than 20 classes of myosin have been found to contribute to a wide range of cellular processes, including endocytosis and exocytosis, autophagy, cytokinesis and the actin cytoskeleton. In Saccharomyces cerevisiae, class V myosin Myo2 (ScMyo2p) is important for the transport of distinct sets of cargo to regions of the cell along the cytoskeleton for polarized growth. To study whether myosins play a role in the formation or function of the appressorium (infectious structure) of the rice blast fungus Magnaporthe oryzae, we identified MoMyo5 as an orthologue of ScMyo2p and characterized its function. Targeted gene disruption revealed that MoMyo5 is required for intracellular transport and is essential for hyphal growth and asexual reproduction. Although the ΔMomyo5 mutant could form appressorium-like structures, the structures were unable to penetrate host cells and were therefore non-pathogenic. We further found that MoMyo5 moves dynamically from the cytoplasm to the hyphal tip, where it interacts with MoSec4, a Rab GTPase involved in secretory transport, hyphal growth and fungal pathogenicity. Our studies indicate that class V myosin and its translocation are tightly coupled with hyphal growth, asexual reproduction, appressorium function and pathogenicity in the rice blast fungus.
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhou350002China
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Chuyun Gao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Jingzhen Wang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Jinlong Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Jun Ji
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Ping Wang
- Departments of Pediatrics and Microbiology, Immunology, and ParasitologyLouisiana State University Health Sciences CenterNew Orleans, LA 70112USA
| |
Collapse
|
15
|
Zhang N, Yao LL, Li XD. Regulation of class V myosin. Cell Mol Life Sci 2018; 75:261-273. [PMID: 28730277 PMCID: PMC11105390 DOI: 10.1007/s00018-017-2599-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 01/26/2023]
Abstract
Class V myosin (myosin-5) is a molecular motor that functions as an organelle transporter. The activation of myosin-5's motor function has long been known to be associated with a transition from the folded conformation in the off-state to the extended conformation in the on-state, but only recently have we begun to understand the underlying mechanism. The globular tail domain (GTD) of myosin-5 has been identified as the inhibitory domain and has recently been shown to function as a dimer in regulating the motor function. The folded off-state of myosin-5 is stabilized by multiple intramolecular interactions, including head-GTD interactions, GTD-GTD interactions, and interactions between the GTD and the C-terminus of the first coiled-coil segment. Any cellular factor that affects these intramolecular interactions and thus the stability of the folded conformation of myosin-5 would be expected to regulate myosin-5 motor function. Both the adaptor proteins of myosin-5 and Ca2+ are potential regulators of myosin-5 motor function, because they can destabilize its folded conformation. A combination of these regulators provides a versatile scheme in regulating myosin-5 motor function in the cell.
Collapse
Affiliation(s)
- Ning Zhang
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin-Lin Yao
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang-Dong Li
- Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Papadopulos A. Membrane shaping by actin and myosin during regulated exocytosis. Mol Cell Neurosci 2017; 84:93-99. [PMID: 28536001 DOI: 10.1016/j.mcn.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 12/01/2022] Open
Abstract
The cortical actin network in neurosecretory cells is a dense mesh of actin filaments underlying the plasma membrane. Interaction of actomyosin with vesicular membranes or the plasma membrane is vital for tethering, retention, transport as well as fusion and fission of exo- and endocytic membrane structures. During regulated exocytosis the cortical actin network undergoes dramatic changes in morphology to accommodate vesicle docking, fusion and replenishment. Most of these processes involve plasma membrane Phosphoinositides (PIP) and investigating the interactions between the actin cortex and secretory structures has become a hotbed for research in recent years. Actin remodelling leads to filopodia outgrowth and the creation of new fusion sites in neurosecretory cells and actin, myosin and dynamin actively shape and maintain the fusion pore of secretory vesicles. Changes in viscoelastic properties of the actin cortex can facilitate vesicular transport and lead to docking and priming of vesicle at the plasma membrane. Small GTPase actin mediators control the state of the cortical actin network and influence vesicular access to their docking and fusion sites. These changes potentially affect membrane properties such as tension and fluidity as well as the mobility of embedded proteins and could influence the processes leading to both exo- and endocytosis. Here we discuss the multitudes of actin and membrane interactions that control successive steps underpinning regulated exocytosis.
Collapse
Affiliation(s)
- Andreas Papadopulos
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
17
|
Wang L, Busam KJ, Benayed R, Cimera R, Wang J, Denley R, Rao M, Aryeequaye R, Mullaney K, Cao L, Ladanyi M, Hameed M. Identification of NTRK3 Fusions in Childhood Melanocytic Neoplasms. J Mol Diagn 2017; 19:387-396. [PMID: 28433076 PMCID: PMC5417047 DOI: 10.1016/j.jmoldx.2016.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 10/23/2016] [Accepted: 11/07/2016] [Indexed: 01/18/2023] Open
Abstract
Spitzoid neoplasms are a distinct group of melanocytic tumors. Genetically, they lack mutations in common melanoma-associated oncogenes. Recent studies have shown that spitzoid tumors may contain a variety of kinase fusions, including ROS1, NTRK1, ALK, BRAF, and RET fusions. We report herein the discovery of recurrent NTRK3 gene rearrangements in childhood melanocytic neoplasms with spitzoid and/or atypical features, based on genome-wide copy number analysis by single-nucleotide polymorphism array, which showed intragenic copy number changes in NTRK3. Break-apart fluorescence in situ hybridization confirmed the presence of NTRK3 rearrangement, and a novel MYO5A-NTRK3 transcript, representing an in-frame fusion of MYO5A exon 32 to NTRK3 exon 12, was identified using a rapid amplification of cDNA ends-based anchored multiplex PCR assay followed by next-generation sequencing. The predicted MYO5A-NTRK3 fusion protein consists of several N-terminal coiled-coil protein dimerization motifs encoded by MYO5A and C-terminal tyrosine kinase domain encoded by NTRK3, which is consistent with the prototypical structure of TRK oncogenic fusions. Our study also demonstrates how array-based copy number analysis can be useful in discovering gene fusions associated with unbalanced genomic aberrations flanking the fusion points. Our findings add another potentially targetable kinase fusion to the list of oncogenic fusions in melanocytic tumors.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Klaus J Busam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert Cimera
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jiajing Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ryan Denley
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mamta Rao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ruth Aryeequaye
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kerry Mullaney
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Long Cao
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Meera Hameed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
18
|
Sonn-Segev A, Bernheim-Groswasser A, Roichman Y. Dynamics in steady state in vitro acto-myosin networks. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:163002. [PMID: 28234236 DOI: 10.1088/1361-648x/aa62ca] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It is well known that many biochemical processes in the cell such as gene regulation, growth signals and activation of ion channels, rely on mechanical stimuli. However, the mechanism by which mechanical signals propagate through cells is not as well understood. In this review we focus on stress propagation in a minimal model for cell elasticity, actomyosin networks, which are comprised of a sub-family of cytoskeleton proteins. After giving an overview of th actomyosin network components, structure and evolution we review stress propagation in these materials as measured through the correlated motion of tracer beads. We also discuss the possibility to extract structural features of these networks from the same experiments. We show that stress transmission through these networks has two pathways, a quickly dissipative one through the bulk, and a long ranged weakly dissipative one through the pre-stressed actin network.
Collapse
Affiliation(s)
- Adar Sonn-Segev
- Raymond & Beverly Sackler School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | |
Collapse
|
19
|
Farquhar RE, Rodrigues E, Hamilton KL. The Role of the Cytoskeleton and Myosin-Vc in the Targeting of KCa3.1 to the Basolateral Membrane of Polarized Epithelial Cells. Front Physiol 2017; 7:639. [PMID: 28101059 PMCID: PMC5209343 DOI: 10.3389/fphys.2016.00639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/06/2016] [Indexed: 12/27/2022] Open
Abstract
Understanding the targeting of KCa3.1 to the basolateral membrane (BLM) of polarized epithelial cells is still emerging. Here, we examined the role of the cytoskeleton (microtubules and microfilaments) and Myosin-Vc (Myo-Vc) in the targeting of KCa3.1 in Fischer rat thyroid epithelial cells. We used a pharmacological approach with immunoblot (for the BLM expression of KCa3.1), Ussing chamber (functional BLM expression of KCa3.1) and siRNA experiments. The actin cytoskeleton inhibitors cytochalasin D (10 μM, 5 h) and latrunculin A (10 μM, 5 h) reduced the targeting of KCa3.1 to the BLM by 88 ± 4 and 70 ± 5%, respectively. Colchicine (10 μM, 5 h) a microtubule inhibitor reduced targeting of KCa3.1 to the BLM by 63 ± 7% and decreased 1-EBIO-stimulated KCa3.1 K+ current by 46 ± 18%, compared with control cells. ML9 (10 μM, 5 h), an inhibitor of myosin light chain kinase, decreased targeting of the channel by 83 ± 2% and reduced K+ current by 54 ± 8% compared to control cells. Inhibiting Myo-V with 2,3-butanedione monoxime (10 mM, 5 h) reduced targeting of the channel to the BLM by 58 ± 5% and decreased the stimulated current of KCa3.1 by 48 ± 12% compared with control cells. Finally, using siRNA for Myo-Vc, we demonstrated that knockdown of Myo-Vc reduced the BLM expression of KCa3.1 by 44 ± 7% and KCa3.1 K+ current by 1.04 ± 0.14 μA compared with control cells. These data suggest that the microtubule and microfilament cytoskeleton and Myo-Vc are critical for the targeting of KCa3.1.
Collapse
Affiliation(s)
- Rachel E Farquhar
- Department of Physiology, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Ely Rodrigues
- Department of Medicine, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Kirk L Hamilton
- Department of Physiology, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| |
Collapse
|
20
|
The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression. Eur J Cell Biol 2016; 95:465-474. [DOI: 10.1016/j.ejcb.2016.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 01/27/2023] Open
|
21
|
Lemmelä S, Solovieva S, Shiri R, Benner C, Heliövaara M, Kettunen J, Anttila V, Ripatti S, Perola M, Seppälä I, Juonala M, Kähönen M, Salomaa V, Viikari J, Raitakari OT, Lehtimäki T, Palotie A, Viikari-Juntura E, Husgafvel-Pursiainen K. Genome-Wide Meta-Analysis of Sciatica in Finnish Population. PLoS One 2016; 11:e0163877. [PMID: 27764105 PMCID: PMC5072673 DOI: 10.1371/journal.pone.0163877] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/15/2016] [Indexed: 12/14/2022] Open
Abstract
Sciatica or the sciatic syndrome is a common and often disabling low back disorder in the working-age population. It has a relatively high heritability but poorly understood molecular mechanisms. The Finnish population is a genetic isolate where small founder population and bottleneck events have led to enrichment of certain rare and low frequency variants. We performed here the first genome-wide association (GWAS) and meta-analysis of sciatica. The meta-analysis was conducted across two GWAS covering 291 Finnish sciatica cases and 3671 controls genotyped and imputed at 7.7 million autosomal variants. The most promising loci (p<1x10-6) were replicated in 776 Finnish sciatica patients and 18,489 controls. We identified five intragenic variants, with relatively low frequencies, at two novel loci associated with sciatica at genome-wide significance. These included chr9:14344410:I (rs71321981) at 9p22.3 (NFIB gene; p = 1.30x10-8, MAF = 0.08) and four variants at 15q21.2: rs145901849, rs80035109, rs190200374 and rs117458827 (MYO5A; p = 1.34x10-8, MAF = 0.06; p = 2.32x10-8, MAF = 0.07; p = 3.85x10-8, MAF = 0.06; p = 4.78x10-8, MAF = 0.07, respectively). The most significant association in the meta-analysis, a single base insertion rs71321981 within the regulatory region of the transcription factor NFIB, replicated in an independent Finnish population sample (p = 0.04). Despite identifying 15q21.2 as a promising locus, we were not able to replicate it. It was differentiated; the lead variants within 15q21.2 were more frequent in Finland (6–7%) than in other European populations (1–2%). Imputation accuracies of the three significantly associated variants (chr9:14344410:I, rs190200374, and rs80035109) were validated by genotyping. In summary, our results suggest a novel locus, 9p22.3 (NFIB), which may be involved in susceptibility to sciatica. In addition, another locus, 15q21.2, emerged as a promising one, but failed to replicate.
Collapse
Affiliation(s)
- Susanna Lemmelä
- Health and Work Ability, Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Svetlana Solovieva
- Health and Work Ability, Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Rahman Shiri
- Health and Work Ability, Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | - Christian Benner
- Institute for Molecular Medicine Finland (FIMM), 00014 University of Helsinki, Helsinki, Finland
- Department of Public Health, 00014 University of Helsinki, Helsinki, Finland
| | - Markku Heliövaara
- Population Health Unit, National Institute for Health and Welfare, 00251 Helsinki, Finland
| | - Johannes Kettunen
- Faculty of Medicine, Institute of Health Sciences, University of Oulu, 90220 Oulu, Finland
- NMR Metabolomics Laboratory, University of Eastern Finland, Kuopio, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Verneri Anttila
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States of America
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), 00014 University of Helsinki, Helsinki, Finland
- Department of Public Health, 00014 University of Helsinki, Helsinki, Finland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, United Kingdom
| | - Markus Perola
- Institute for Molecular Medicine Finland (FIMM), 00014 University of Helsinki, Helsinki, Finland
- Public Health Genomics Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, 00271 Helsinki, Finland
- The Estonian Genome Center, University of Tartu, 51010 Tartu, Estonia
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, University of Tampere School of Medicine, 33520 Tampere, Finland
| | - Markus Juonala
- Division of Medicine, Turku University Hospital, 20521 Turku, Finland
- Department of Medicine, University of Turku, 20521 Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, 33521 Tampere, Finland
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, 00251 Helsinki, Finland
| | - Jorma Viikari
- Division of Medicine, Turku University Hospital, 20521 Turku, Finland
- Department of Medicine, University of Turku, 20521 Turku, Finland
| | - Olli T. Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20520 Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, 20521 Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, University of Tampere School of Medicine, 33520 Tampere, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), 00014 University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States of America
- Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts 02114, United States of America
| | - Eira Viikari-Juntura
- Disability Prevention Centre, Finnish Institute of Occupational Health, 00250 Helsinki, Finland
| | | |
Collapse
|
22
|
Inhibitory effect of 2-methyl-naphtho[1,2,3-de]quinolin-8-one on melanosome transport and skin pigmentation. Sci Rep 2016; 6:29189. [PMID: 27381646 PMCID: PMC4933902 DOI: 10.1038/srep29189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
Melanosomes are lysosome-related organelles with specialized capabilities of melanin synthesis and movement mediated by the Rab27a-Melanophilin-MyosinVa protein complex. In this study, we found that 2-methyl-naphtho[1,2,3-de]quinolin-8-one (MNQO) induced melanosome aggregation around the nucleus in melan-a melanocytes and in melan-a melanocytes/SP-1 keratinocyte co-cultures without inducing toxicity or changing the melanin content. Western blot and real-time PCR analyses showed that MNQO decreased expression of the Rab27a, Melanophilin and MyosinVa proteins and mRNAs, respectively, in melan-a melanocytes. In a reconstituted human epidermis model, treatment with 0.001% MNQO reduced skin pigmentation. Also, MNQO reduced skin pigmentation in brown guinea pigs induced by UVB irradiation. These results indicated that regulation of melanosome transport may serve as a good target for new skin depigmenting agents and MNQO itself could be a candidate.
Collapse
|
23
|
Vale-Costa S, Amorim MJ. Clustering of Rab11 vesicles in influenza A virus infected cells creates hotspots containing the 8 viral ribonucleoproteins. Small GTPases 2016; 8:71-77. [PMID: 27337591 PMCID: PMC5464114 DOI: 10.1080/21541248.2016.1199190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Influenza A virus is an important human pathogen causative of yearly epidemics and occasional pandemics. The ability to replicate within the host cell is a determinant of virulence, amplifying viral numbers for host-to-host transmission. This process requires multiple rounds of entering permissive cells, replication, and virion assembly at the plasma membrane, the site of viral budding and release. The assembly of influenza A virus involves packaging of several viral (and host) proteins and of a segmented genome, composed of 8 distinct RNAs in the form of viral ribonucleoproteins (vRNPs). The selective assembly of the 8-segment core remains one of the most interesting unresolved problems in virology. The recycling endosome regulatory GTPase Rab11 was shown to contribute to the process, by transporting vRNPs to the periphery, giving rise to enlarged cytosolic puncta rich in Rab11 and the 8 vRNPs. We recently reported that vRNP hotspots were formed of clustered vesicles harbouring protruding electron-dense structures that resembled vRNPs. Mechanistically, vRNP hotspots were formed as vRNPs outcompeted the cognate effectors of Rab11, the Rab11-Family-Interacting-Proteins (FIPs) for binding, and as a consequence impair recycling sorting at an unknown step. Here, we speculate on the impact that such impairment might have in host immunity, membrane architecture and viral assembly.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- a Cell Biology of Viral Infection Lab , Instituto Gulbenkian de Ciência , Oeiras , Portugal
| | - Maria João Amorim
- a Cell Biology of Viral Infection Lab , Instituto Gulbenkian de Ciência , Oeiras , Portugal
| |
Collapse
|
24
|
Neuhaus A, Eggeling C, Erdmann R, Schliebs W. Why do peroxisomes associate with the cytoskeleton? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1019-26. [DOI: 10.1016/j.bbamcr.2015.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
|
25
|
Martins JP, Kennedy PJ, Santos HA, Barrias C, Sarmento B. A comprehensive review of the neonatal Fc receptor and its application in drug delivery. Pharmacol Ther 2016; 161:22-39. [PMID: 27016466 DOI: 10.1016/j.pharmthera.2016.03.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Advances in the understanding of neonatal Fc receptor (FcRn) biology and function have demonstrated that this receptor, primarily identified for the transfer of passive immunity from mother infant, is involved in several biological and immunological processes. In fact, FcRn is responsible for the long half-life of IgG and albumin in the serum, by creating an intracellular protein reservoir, which is protected from lysosomal degradation and, importantly, trafficked across the cell. Such discovery has led researchers to hypothesize the role for this unique receptor in the controlled delivery of therapeutic agents. A great amount of FcRn-based strategies are already under extensive investigation, in which FcRn reveals to have profound impact on the biodistribution and half-life extension of therapeutic agents. This review summarizes the main findings on FcRn biology, function and distribution throughout different tissues, together with the main advances on the FcRn-based therapeutic opportunities and model systems, which indicate that this receptor is a potential target for therapeutic regimen modification.
Collapse
Affiliation(s)
- João Pedro Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal
| | - Patrick J Kennedy
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal; Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI -00014 Helsinki, Finland
| | - Cristina Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal.
| |
Collapse
|
26
|
Abstract
Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
27
|
Godec A, Metzler R. Signal focusing through active transport. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:010701. [PMID: 26274108 DOI: 10.1103/physreve.92.010701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 06/04/2023]
Abstract
The accuracy of molecular signaling in biological cells and novel diagnostic devices is ultimately limited by the counting noise floor imposed by the thermal diffusion. Motivated by the fact that messenger RNA and vesicle-engulfed signaling molecules transiently bind to molecular motors and are actively transported in biological cells, we show here that the random active delivery of signaling particles to within a typical diffusion distance to the receptor generically reduces the correlation time of the counting noise. Considering a variety of signaling particle sizes from mRNA to vesicles and cell sizes from prokaryotic to eukaryotic cells, we show that the conditions for active focusing-faster and more precise signaling-are indeed compatible with observations in living cells. Our results improve the understanding of molecular cellular signaling and novel diagnostic devices.
Collapse
Affiliation(s)
- Aljaž Godec
- Institute of Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
- Laboratory for Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
- Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland
| |
Collapse
|
28
|
Souza CCR, Dombroski TCD, Machado HR, Oliveira RS, Rocha LB, Rodrigues ARA, Neder L, Chimelli L, Corrêa VMA, Larson RE, Martins AR. Myosin Va is developmentally regulated and expressed in the human cerebellum from birth to old age. Braz J Med Biol Res 2015; 46:164-70. [PMID: 23558932 PMCID: PMC3854355 DOI: 10.1590/1414-431x20122627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 12/03/2012] [Indexed: 12/04/2022] Open
Abstract
Myosin Va functions as a processive, actin-based motor molecule highly enriched
in the nervous system, which transports and/or tethers organelles, vesicles, and
mRNA and protein translation machinery. Mutation of myosin Va leads to Griscelli
disease that is associated with severe neurological deficits and a short life
span. Despite playing a critical role in development, the expression of myosin
Va in the central nervous system throughout the human life span has not been
reported. To address this issue, the cerebellar expression of myosin Va from
newborns to elderly humans was studied by immunohistochemistry using an
affinity-purified anti-myosin Va antibody. Myosin Va was expressed at all ages
from the 10th postnatal day to the 98th year of life, in molecular, Purkinje and
granular cerebellar layers. Cerebellar myosin Va expression did not differ
essentially in localization or intensity from childhood to old age, except
during the postnatal developmental period. Structures resembling granules and
climbing fibers in Purkinje cells were deeply stained. In dentate neurons, long
processes were deeply stained by anti-myosin Va, as were punctate nuclear
structures. During the first postnatal year, myosin Va was differentially
expressed in the external granular layer (EGL). In the EGL, proliferating
prospective granule cells were not stained by anti-myosin Va antibody. In
contrast, premigratory granule cells in the EGL stained moderately. Granule
cells exhibiting a migratory profile in the molecular layer were also moderately
stained. In conclusion, neuronal myosin Va is developmentally regulated, and
appears to be required for cerebellar function from early postnatal life to
senescence.
Collapse
Affiliation(s)
- C C R Souza
- Departamento de Neurologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Motor coupling through lipid membranes enhances transport velocities for ensembles of myosin Va. Proc Natl Acad Sci U S A 2014; 111:E3986-95. [PMID: 25201964 DOI: 10.1073/pnas.1406535111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Myosin Va is an actin-based molecular motor responsible for transport and positioning of a wide array of intracellular cargoes. Although myosin Va motors have been well characterized at the single-molecule level, physiological transport is carried out by ensembles of motors. Studies that explore the behavior of ensembles of molecular motors have used nonphysiological cargoes such as DNA linkers or glass beads, which do not reproduce one key aspect of vesicular systems--the fluid intermotor coupling of biological lipid membranes. Using a system of defined synthetic lipid vesicles (100- to 650-nm diameter) composed of either 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (fluid at room temperature) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) (gel at room temperature) with a range of surface densities of myosin Va motors (32-125 motors per μm(2)), we demonstrate that the velocity of vesicle transport by ensembles of myosin Va is sensitive to properties of the cargo. Gel-state DPPC vesicles bound with multiple motors travel at velocities equal to or less than vesicles with a single myosin Va (∼450 nm/s), whereas surprisingly, ensembles of myosin Va are able to transport fluid-state DOPC vesicles at velocities significantly faster (>700 nm/s) than a single motor. To explain these data, we developed a Monte Carlo simulation that suggests that these reductions in velocity can be attributed to two distinct mechanisms of intermotor interference (i.e., load-dependent modulation of stepping kinetics and binding-site exclusion), whereas faster transport velocities are consistent with a model wherein the normal stepping behavior of the myosin is supplemented by the preferential detachment of the trailing motor from the actin track.
Collapse
|
30
|
Kusters R, van der Heijden T, Kaoui B, Harting J, Storm C. Forced transport of deformable containers through narrow constrictions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033006. [PMID: 25314528 DOI: 10.1103/physreve.90.033006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Indexed: 06/04/2023]
Abstract
We study, numerically and analytically, the forced transport of deformable containers through a narrow constriction. Our central aim is to quantify the competition between the constriction geometry and the active forcing, regulating whether and at which speed a container may pass through the constriction and under what conditions it gets stuck. We focus, in particular, on the interrelation between the force that propels the container and the radius of the channel, as these are the external variables that may be directly controlled in both artificial and physiological settings. We present lattice Boltzmann simulations that elucidate in detail the various phases of translocation and present simplified analytical models that treat two limiting types of these membrane containers: deformational energy dominated by the bending or stretching contribution. In either case we find excellent agreement with the full simulations, and our results reveal that not only the radius but also the length of the constriction determines whether or not the container will pass.
Collapse
Affiliation(s)
- Remy Kusters
- Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5600MB Eindhoven, The Netherlands
| | - Thijs van der Heijden
- Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5600MB Eindhoven, The Netherlands
| | - Badr Kaoui
- Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5600MB Eindhoven, The Netherlands and Theoretical Physics I, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Jens Harting
- Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5600MB Eindhoven, The Netherlands and Faculty of Science and Technology, Mesa+ Institute, University of Twente, 7500AE Enschede, The Netherlands
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5600MB Eindhoven, The Netherlands and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
31
|
Garmendia-Torres C, Skupin A, Michael SA, Ruusuvuori P, Kuwada NJ, Falconnet D, Cary GA, Hansen C, Wiggins PA, Dudley AM. Unidirectional P-body transport during the yeast cell cycle. PLoS One 2014; 9:e99428. [PMID: 24918601 PMCID: PMC4053424 DOI: 10.1371/journal.pone.0099428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/12/2014] [Indexed: 12/29/2022] Open
Abstract
P-bodies belong to a large family of RNA granules that are associated with post-transcriptional gene regulation, conserved from yeast to mammals, and influence biological processes ranging from germ cell development to neuronal plasticity. RNA granules can also transport RNAs to specific locations. Germ granules transport maternal RNAs to the embryo, and neuronal granules transport RNAs long distances to the synaptic dendrites. Here we combine microfluidic-based fluorescent microscopy of single cells and automated image analysis to follow p-body dynamics during cell division in yeast. Our results demonstrate that these highly dynamic granules undergo a unidirectional transport from the mother to the daughter cell during mitosis as well as a constrained “hovering” near the bud site half an hour before the bud is observable. Both behaviors are dependent on the Myo4p/She2p RNA transport machinery. Furthermore, single cell analysis of cell size suggests that PBs play an important role in daughter cell growth under nutrient limiting conditions.
Collapse
Affiliation(s)
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California, United States of America
| | - Sean A. Michael
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Pekka Ruusuvuori
- Tampere University of Technology, Pori, Finland
- BioMediTech, University of Tampere, Tampere, Finland
| | - Nathan J. Kuwada
- Physics and Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Didier Falconnet
- Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregory A. Cary
- Institute for Systems Biology, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Carl Hansen
- Centre for High-Throughput Biology, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul A. Wiggins
- Physics and Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Aimée M. Dudley
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Pacific Northwest Diabetes Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
32
|
Bouzat S. Influence of molecular motors on the motion of particles in viscoelastic media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062707. [PMID: 25019814 DOI: 10.1103/physreve.89.062707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Indexed: 06/03/2023]
Abstract
We study theoretically and by numerical simulations the motion of particles driven by molecular motors in a viscoelastic medium representing the cell cytoplasm. For this, we consider a generalized Langevin equation coupled to a stochastic stepping dynamics for the motors that takes into account the action of each motor separately. In the absence of motors, the model produces subdiffusive motion of particles characterized by a power-law scaling of the mean square displacement versus the lag time as t^{α}, with 0<α<1, similar to that observed in cells. Our results show how the action of the motors can induce a transition to a superdiffusive regime at large lag times with the characteristics of those found in experiments reported in the literature. We also show that at small lag times, the motors can act as static crosslinkers that slow down the natural subdiffusive transport. An analysis of previously reported experimental data in the relevant time scales provides evidence of this phenomenon. Finally, we study the effect of a harmonic potential representing an optical trap, and we show a way to approach to a macroscopic description of the active transport in cells. This last point stresses the relevance of the molecular motors for generating not only directed motion to specific targets, but also fast diffusivelike random motion.
Collapse
Affiliation(s)
- Sebastián Bouzat
- Consejo Nacional de Investigaciones Científicas y Técnicas, Centro Atómico Bariloche (CNEA), (8400) Bariloche, Río Negro, Argentina
| |
Collapse
|
33
|
Yau RG, Peng Y, Valiathan RR, Birkeland SR, Wilson TE, Weisman LS. Release from myosin V via regulated recruitment of an E3 ubiquitin ligase controls organelle localization. Dev Cell 2014; 28:520-33. [PMID: 24636257 DOI: 10.1016/j.devcel.2014.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/13/2013] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
Molecular motors transport organelles to specific subcellular locations. Upon arrival at their correct locations, motors release organelles via unknown mechanisms. The yeast myosin V, Myo2, binds the vacuole-specific adaptor Vac17 to transport the vacuole from the mother cell to the bud. Here, we show that vacuole detachment from Myo2 occurs in multiple regulated steps along the entire pathway of vacuole transport. Detachment initiates in the mother cell with the phosphorylation of Vac17 that recruits the E3 ligase Dma1 to the vacuole. However, Dma1 recruitment also requires the assembly of the vacuole transport complex and is first observed after the vacuole enters the bud. Dma1 remains on the vacuole until the bud and mother vacuoles separate. Subsequently, Dma1 targets Vac17 for proteasomal degradation. Notably, we find that the termination of peroxisome transport also requires Dma1. We predict that this is a general mechanism that detaches myosin V from select cargoes.
Collapse
Affiliation(s)
- Richard G Yau
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yutian Peng
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Shanda R Birkeland
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Thomas E Wilson
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lois S Weisman
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
34
|
Coupling of two non-processive myosin 5c dimers enables processive stepping along actin filaments. Sci Rep 2014; 4:4907. [PMID: 24809456 PMCID: PMC4014986 DOI: 10.1038/srep04907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/11/2014] [Indexed: 11/09/2022] Open
Abstract
Myosin 5c (Myo5c) is a low duty ratio, non-processive motor unable to move continuously along actin filaments though it is believed to participate in secretory vesicle trafficking in vertebrate cells. Here, we measured the ATPase kinetics of Myo5c dimers and tested the possibility that the coupling of two Myo5c molecules enables processive movement. Steady-state ATPase activity and ADP dissociation kinetics demonstrated that a dimer of Myo5c-HMM (double-headed heavy meromyosin 5c) has a 6-fold lower Km for actin filaments than Myo5c-S1 (single-headed myosin 5c subfragment-1), indicating that the two heads of Myo5c-HMM increase F-actin-binding affinity. Nanometer-precision tracking analyses showed that two Myo5c-HMM dimers linked with each other via a DNA scaffold and moved processively along actin filaments. Moreover, the distance between the Myo5c molecules on the DNA scaffold is an important factor for the processive movement. Individual Myo5c molecules in two-dimer complexes move stochastically in 30-36 nm steps. These results demonstrate that two dimers of Myo5c molecules on a DNA scaffold increased the probability of rebinding to F-actin and enabled processive steps along actin filaments, which could be used for collective cargo transport in cells.
Collapse
|
35
|
Schumacher-Bass SM, Vesely ED, Zhang L, Ryland KE, McEwen DP, Chan PJ, Frasier CR, McIntyre JC, Shaw RM, Martens JR. Role for myosin-V motor proteins in the selective delivery of Kv channel isoforms to the membrane surface of cardiac myocytes. Circ Res 2014; 114:982-92. [PMID: 24508725 DOI: 10.1161/circresaha.114.302711] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Kv1.5 (KCNA5) mediates the ultra-rapid delayed rectifier current that controls atrial action potential duration. Given its atrial-specific expression and alterations in human atrial fibrillation, Kv1.5 has emerged as a promising target for the treatment of atrial fibrillation. A necessary step in the development of novel agents that selectively modulate trafficking pathways is the identification of the cellular machinery controlling Kv1.5 surface density, of which little is yet known. OBJECTIVE To investigate the role of the unconventional myosin-V (MYO5A and MYO5B) motors in determining the cell surface density of Kv1.5. METHODS AND RESULTS Western blot analysis showed MYO5A and MYO5B expression in the heart, whereas disruption of endogenous motors selectively reduced IKur current in adult rat cardiomyocytes. Dominant negative constructs and short hairpin RNA silencing demonstrated a role for MYO5A and MYO5B in the surface trafficking of Kv1.5 and connexin-43 but not potassium voltage-gated channel, subfamily H (eag-related), member 2 (KCNH2). Live-cell imaging of Kv1.5-GFP and retrospective labeling of phalloidin demonstrated motility of Kv1.5 vesicles on actin tracts. MYO5A participated in anterograde trafficking, whereas MYO5B regulated postendocytic recycling. Overexpression of mutant motors revealed a selective role for Rab11 in coupling MYO5B to Kv1.5 recycling. CONCLUSIONS MYO5A and MYO5B control functionally distinct steps in the surface trafficking of Kv1.5. These isoform-specific trafficking pathways determine Kv1.5-encoded IKur in myocytes to regulate repolarizing current and, consequently, cardiac excitability. Therapeutic strategies that manipulate Kv1.5 selective trafficking pathways may prove useful in the treatment of arrhythmias.
Collapse
Affiliation(s)
- Sarah M Schumacher-Bass
- From the Department of Pharmacology, University of Michigan, Ann Arbor (S.M.S.-B., E.D.V., L.Z., K.E.R., D.P.M., C.R.F., J.C.M., J.R.M.); Cardiovascular Research Institute Robin Shaw, Department of Medicine, University of California, San Francisco (P.J.C.); and Cedars-Sinai Medical Center, Los Angeles, CA (R.M.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lindsay AJ, McCaffrey MW. Myosin Va is required for the transport of fragile X mental retardation protein (FMRP) granules. Biol Cell 2014; 106:57-71. [PMID: 24175909 DOI: 10.1111/boc.201200076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 10/29/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND INFORMATION Fragile X mental retardation protein (FMRP) is a selective RNA binding protein that functions as a translational inhibitor. It also plays a role in directing the transport of a subset of mRNAs to their site of translation and several recent reports have implicated microtubule motor proteins in the transport of FMRP-messenger ribonucleoprotein (mRNP) granules in neurons. Earlier work reported the association of the actin-based motor protein myosin Va with FMRP granules. RESULTS Here, we follow up on this finding and confirm that myosin Va does in fact associate with FMRP and is required for its correct intracellular localisation. FMRP is concentrated in the perinuclear region of myosin Va-null mouse melanoma cells which contrasts starkly with the evenly distributed punctate pattern observed in wild-type cells. Similarly, overexpression of a dominant-negative mutant of myosin Va results in the accumulation of FMRP in large aggregate-like structures. FRAP experiments demonstrate that FMRP is largely immobile in the absence of myosin Va. CONCLUSIONS Combining these data, we propose a model in which myosin Va and kinesin play key roles in the assembly and subsequent transport of FMRP granules along microtubules to the periphery of the cell. Myosin Va captures the complex onto peripheral actin structures and mediates the local delivery of the FMRP granule to the site of mRNA translation.
Collapse
Affiliation(s)
- Andrew J Lindsay
- Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | | |
Collapse
|
37
|
Velvarska H, Niessing D. Structural insights into the globular tails of the human type v myosins Myo5a, Myo5b, And Myo5c. PLoS One 2013; 8:e82065. [PMID: 24339992 PMCID: PMC3858360 DOI: 10.1371/journal.pone.0082065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/21/2013] [Indexed: 01/11/2023] Open
Abstract
Vertebrate type V myosins (MyoV) Myo5a, Myo5b, and Myo5c mediate transport of several different cargoes. All MyoV paralogs bind to cargo complexes mainly by their C-terminal globular domains. In absence of cargo, the globular domain of Myo5a inhibits its motor domain. Here, we report low-resolution SAXS models for the globular domains from human Myo5a, Myo5b, and Myo5c, which suggest very similar overall shapes of all three paralogs. We determined the crystal structures of globular domains from Myo5a and Myo5b, and provide a homology model for human Myo5c. When we docked the Myo5a crystal structure into a previously published electron microscopy density of the autoinhibited full-length Myo5a, only one domain orientation resulted in a good fit. This structural arrangement suggests the participation of additional region of the globular domain in autoinhibition. Quantification of the interaction of the Myo5a globular domain with its motor complex revealed a tight binding with dissociation half-life in the order of minutes, suggesting a rather slow transition between the active and inactive states.
Collapse
Affiliation(s)
- Hana Velvarska
- Institute of Structural Biology; Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
| | - Dierk Niessing
- Institute of Structural Biology; Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University, München, Germany
- * E-mail:
| |
Collapse
|
38
|
Nascimento AFZ, Trindade DM, Tonoli CCC, de Giuseppe PO, Assis LHP, Honorato RV, de Oliveira PSL, Mahajan P, Burgess-Brown NA, von Delft F, Larson RE, Murakami MT. Structural insights into functional overlapping and differentiation among myosin V motors. J Biol Chem 2013; 288:34131-34145. [PMID: 24097982 PMCID: PMC3837155 DOI: 10.1074/jbc.m113.507202] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/27/2013] [Indexed: 11/06/2022] Open
Abstract
Myosin V (MyoV) motors have been implicated in the intracellular transport of diverse cargoes including vesicles, organelles, RNA-protein complexes, and regulatory proteins. Here, we have solved the cargo-binding domain (CBD) structures of the three human MyoV paralogs (Va, Vb, and Vc), revealing subtle structural changes that drive functional differentiation and a novel redox mechanism controlling the CBD dimerization process, which is unique for the MyoVc subclass. Moreover, the cargo- and motor-binding sites were structurally assigned, indicating the conservation of residues involved in the recognition of adaptors for peroxisome transport and providing high resolution insights into motor domain inhibition by CBD. These results contribute to understanding the structural requirements for cargo transport, autoinhibition, and regulatory mechanisms in myosin V motors.
Collapse
Affiliation(s)
- Andrey F Z Nascimento
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Daniel M Trindade
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Celisa C C Tonoli
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Priscila O de Giuseppe
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Leandro H P Assis
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Rodrigo V Honorato
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Paulo S L de Oliveira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil
| | - Pravin Mahajan
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | | | - Frank von Delft
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Roy E Larson
- Department of Cellular & Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Mario T Murakami
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, Campinas, São Paulo 13083-100, Brazil.
| |
Collapse
|
39
|
Steele DF, Fedida D. Cytoskeletal roles in cardiac ion channel expression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:665-73. [PMID: 23680626 DOI: 10.1016/j.bbamem.2013.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 11/25/2022]
Abstract
The cytoskeleton and cardiac ion channel expression are closely linked. From the time that newly synthesized channels exit the endoplasmic reticulum, they are either traveling along the microtubule or actin cytoskeletons or likely anchored in the plasma membrane or in internal vesicular pools by those scaffolds. Molecular motors, small GTPases and even the dynamics of the cytoskeletons themselves influence the trafficking and expression of the channels. In some cases, the functioning of the channels themselves has profound influences on the cytoskeleton. Here we provide an overview of the current state of knowledge on the involvement of the actin and microtubule cytoskeletons in the trafficking, targeting and expression of cardiac ion channels and a few channels expressed elsewhere. We highlight, also, some of the many questions that remain about these processes. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- David F Steele
- Dept. of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - David Fedida
- Dept. of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
40
|
Myosin-V Opposes Microtubule-Based Cargo Transport and Drives Directional Motility on Cortical Actin. Curr Biol 2013; 23:828-34. [DOI: 10.1016/j.cub.2013.03.068] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 02/27/2013] [Accepted: 03/28/2013] [Indexed: 11/15/2022]
|
41
|
Nelson JC, Stavoe AKH, Colón-Ramos DA. The actin cytoskeleton in presynaptic assembly. Cell Adh Migr 2013; 7:379-87. [PMID: 23628914 DOI: 10.4161/cam.24803] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dramatic morphogenetic processes underpin nearly every step of nervous system development, from initial neuronal migration and axon guidance to synaptogenesis. Underlying this morphogenesis are dynamic rearrangements of cytoskeletal architecture. Here we discuss the roles of the actin cytoskeleton in the development of presynaptic terminals, from the elaboration of terminal arbors to the recruitment of presynaptic vesicles and active zone components. The studies discussed here underscore the importance of actin regulation at every step in neuronal circuit assembly.
Collapse
Affiliation(s)
- Jessica C Nelson
- Program in Cellular Neuroscience, Neurodegeneration and Repair; Department of Cell Biology; Yale University; New Haven, CT USA
| | | | | |
Collapse
|
42
|
Syamaladevi DP, Sunitha MS, Kalaimathy S, Reddy CC, Iftekhar M, Pasha SN, Sowdhamini R. Myosinome: a database of myosins from select eukaryotic genomes to facilitate analysis of sequence-structure-function relationships. Bioinform Biol Insights 2012. [PMID: 23189029 PMCID: PMC3503467 DOI: 10.4137/bbi.s9902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Myosins are one of the largest protein superfamilies with 24 classes. They have conserved structural features and catalytic domains yet show huge variation at different domains resulting in a variety of functions. Myosins are molecules driving various kinds of cellular processes and motility until the level of organisms. These are ATPases that utilize the chemical energy released by ATP hydrolysis to bring about conformational changes leading to a motor function. Myosins are important as they are involved in almost all cellular activities ranging from cell division to transcriptional regulation. They are crucial due to their involvement in many congenital diseases symptomatized by muscular malfunctions, cardiac diseases, deafness, neural and immunological dysfunction, and so on, many of which lead to death at an early age. We present Myosinome, a database of selected myosin classes (myosin II, V, and VI) from five model organisms. This knowledge base provides the sequences, phylogenetic clustering, domain architectures of myosins and molecular models, structural analyses, and relevant literature of their coiled-coil domains. In the current version of Myosinome, information about 71 myosin sequences belonging to three myosin classes (myosin II, V, and VI) in five model organisms (Homo Sapiens, Mus musculus, D. melanogaster, C. elegans and S. cereviseae) identified using bioinformatics surveys are presented, and several of them are yet to be functionally characterized. As these proteins are involved in congenital diseases, such a database would be useful in short-listing candidates for gene therapy and drug development. The database can be accessed from http://caps.ncbs.res.in/myosinome.
Collapse
Affiliation(s)
- Divya P Syamaladevi
- National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bangalore, India. ; Sugarcane Breeding Institute (SBI-ICAR), Coimbatore, India
| | | | | | | | | | | | | |
Collapse
|
43
|
Griscelli syndrome types 1 and 3: analysis of four new cases and long-term evaluation of previously diagnosed patients. Eur J Pediatr 2012; 171:1527-31. [PMID: 22711375 DOI: 10.1007/s00431-012-1765-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
Abstract
Griscelli syndrome (GS) is a rare autosomal recessive disorder characterized by partial albinism. Three different types are caused by defects in three different genes. Patients with GS type 1 have primary central nervous system dysfunction, type 2 patients commonly develop hemophagocytic lymphohistiocytosis, and type 3 patients have only partial albinism. While hematopoietic stem cell transplantation is life saving in type 2, no specific therapy is required for types 1 and 3. Patients with GS types 1 and 3 are very rare. To date, only 2 patients with type 3 and about 20 GS type 1 patients, including the patients described as Elejalde syndrome, have been reported. The neurological deficits in Elejalde syndrome were reported as severe neurodevelopmental delay, seizures, hypotonia, and ophthalmological problems including nystagmus, diplopia, and retinal problems. However, none of these patients' clinical progresses were reported. We described here our two new type 1 and two type 3 patients along with the progresses of our previously diagnosed patients with GS types 1 and 3. Our previous patient with GS type I is alive at age 21 without any other problems except severe mental and motor retardation, patients with type 3 are healthy at ages 21 and 24 years having only pigmentary dilution; silvery gray hair, eye brows, and eyelashes. Since prognosis, treatment options, and genetic counseling markedly differ among different types, molecular characterization has utmost importance in GS.
Collapse
|
44
|
Tominaga M, Kojima H, Yokota E, Nakamori R, Anson M, Shimmen T, Oiwa K. Calcium-induced mechanical change in the neck domain alters the activity of plant myosin XI. J Biol Chem 2012; 287:30711-8. [PMID: 22740687 PMCID: PMC3436315 DOI: 10.1074/jbc.m112.346668] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 06/19/2012] [Indexed: 11/25/2022] Open
Abstract
Plant myosin XI functions as a motor that generates cytoplasmic streaming in plant cells. Although cytoplasmic streaming is known to be regulated by intracellular Ca(2+) concentration, the molecular mechanism underlying this control is not fully understood. Here, we investigated the mechanism of regulation of myosin XI by Ca(2+) at the molecular level. Actin filaments were easily detached from myosin XI in an in vitro motility assay at high Ca(2+) concentration (pCa 4) concomitant with the detachment of calmodulin light chains from the neck domains. Electron microscopic observations showed that myosin XI at pCa 4 shortened the neck domain by 30%. Single-molecule analysis revealed that the step size of myosin XI at pCa 4 was shortened to 27 nm under low load and to 22 nm under high load compared with 35 nm independent of the load for intact myosin XI. These results indicate that modulation of the mechanical properties of the neck domain is a key factor for achieving the Ca(2+)-induced regulation of cytoplasmic streaming.
Collapse
Affiliation(s)
- Motoki Tominaga
- From the Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Hiroaki Kojima
- From the Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Etsuo Yokota
- the Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan, and
| | - Rinna Nakamori
- From the Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Michael Anson
- the Division of Physical Biochemistry, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Teruo Shimmen
- the Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan, and
| | - Kazuhiro Oiwa
- From the Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
- the Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan, and
| |
Collapse
|
45
|
Balse E, Steele DF, Abriel H, Coulombe A, Fedida D, Hatem SN. Dynamic of Ion Channel Expression at the Plasma Membrane of Cardiomyocytes. Physiol Rev 2012; 92:1317-58. [DOI: 10.1152/physrev.00041.2011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.
Collapse
Affiliation(s)
- Elise Balse
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David F. Steele
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Hugues Abriel
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Alain Coulombe
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - David Fedida
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| | - Stéphane N. Hatem
- Institute of Cardiometabolism and Nutrition, Paris, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Heart and Metabolism Division, Paris, France; Institut National de la Santé et de la Recherche Médicale UMR_S956, Paris, France; Université Pierre et Marie Curie, Paris, France; Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, Canada; and Department of Clinical Research University of Bern, Bern, Switzerland
| |
Collapse
|
46
|
Myrip couples the capture of secretory granules by the actin-rich cell cortex and their attachment to the plasma membrane. J Neurosci 2012; 32:2564-77. [PMID: 22396429 DOI: 10.1523/jneurosci.2724-11.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex followed by their attachment to the plasma membrane (PM). How these reactions are executed and coordinated is still unclear. Myrip, which is also known as Slac-2c, binds to the SG-associated GTPase Rab27 and is thought to promote the delivery of SGs to the PM by recruiting the molecular motor myosin Va. Myrip also interacts with actin and the exocyst complex, suggesting that it may exert multiple roles in the secretory process. By combining total internal reflection fluorescence microscopy, single-particle tracking, a photoconversion-based assay, and mathematical modeling, we show that, in human enterochromaffin cells, Myrip (1) inhibits a class of SG motion characterized by fast and directed movement, suggesting that it facilitates the dissociation of SGs from microtubules; (2) enhances their motion toward the PM and the probability of SG attachment to the PM; and (3) increases the characteristic time of immobilization at the PM, indicating that it is a component of the molecular machinery that tether SGs to the PM. Remarkably, while the first two effects of Myrip depend on its ability to recruit myosin Va on SGs, the third is myosin Va independent but relies on the C-terminal domain of Myrip. We conclude that Myrip couples the retention of SGs in the cell cortex, their transport to the PM, and their attachment to the PM, and thus promotes secretion. These three steps of the secretory process are thus intimately coordinated.
Collapse
|
47
|
Koles K, Nunnari J, Korkut C, Barria R, Brewer C, Li Y, Leszyk J, Zhang B, Budnik V. Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J Biol Chem 2012; 287:16820-34. [PMID: 22437826 DOI: 10.1074/jbc.m112.342667] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Wnt signaling plays critical roles during synaptic development and plasticity. However, the mechanisms by which Wnts are released and travel to target cells are unresolved. During synaptic development, the secretion of Drosophila Wnt1, Wingless, requires the function of Evenness Interrupted (Evi)/Wls, a Wingless-binding protein that is secreted along with Wingless at the neuromuscular junction. Given that Evi is a transmembrane protein, these studies suggested the presence of a novel vesicular mechanism of trans-synaptic communication, potentially in the form of exosomes. To establish the mechanisms for the release of Evi vesicles, we used a dsRNA assay in cultured cells to screen for genes that when down-regulated prevent the release of Evi vesicles. We identified two proteins, Rab11 and Syntaxin 1A (Syx1A), that were required for Evi vesicle release. To determine whether the same mechanisms were used in vivo at the neuromuscular junction, we altered the activity of Rab11 and Syx1A in motoneurons and determined the impact on Evi release. We found that Syx1A, Rab11, and its effector Myosin5 were required for proper Evi vesicle release. Furthermore, ultrastructural analysis of synaptic boutons demonstrated the presence of multivesicular bodies, organelles involved in the production and release of exosomes, and these multivesicular bodies contained Evi. We also used mass spectrometry, electron microscopy, and biochemical techniques to characterize the exosome fraction from cultured cells. Our studies revealed that secreted Evi vesicles show remarkable conservation with exosomes in other systems. In summary, our observations unravel some of the in vivo mechanisms required for Evi vesicle release.
Collapse
Affiliation(s)
- Kate Koles
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Drosophila photoreceptors (R cells) are an extreme instance of sensory membrane amplification via apical microvilli, a widely deployed and deeply conserved operation of polarized epithelial cells. Developmental rotation of R cell apices aligns rhabdomere microvilli across the optical axis and enables enormous membrane expansion in a new, proximal distal dimension. R cell ectoplasm, the specialized cortical cytoplasm abutting the rhabdomere is likewise enormously amplified. Ectoplasm is dominated by the actin-rich terminal web, a conserved operational domain of the ancient vesicle-transport motor, Myosin V. R cells harness Myosin V to move two distinct cargoes, the biosynthetic traffic that builds the rhabdomere during development, and the migration of pigment granules that mediates the adaptive "longitudinal pupil" in adults, using two distinct Rab proteins. Ectoplasm further shapes a distinct cortical endosome compartment, the subrhabdomeral cisterna (SRC), vital to normal cell function. Reticulon, a protein that promotes endomembrane curvature, marks the SRC. R cell visual arrestin 2 (Arr2) is predominantly cytoplasmic in dark-adapted photoreceptors but on illumination it translocates to the rhabdomere, where it quenches ongoing photosignaling by binding to activated metarhodopsin. Arr2 translocation is "powered" by diffusion; a motor is not required to move Arr2 and ectoplasm does not obstruct its rapid diffusion to the rhabdomere.
Collapse
Affiliation(s)
- Hongai Xia
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
49
|
Syamaladevi DP, Spudich JA, Sowdhamini R. Structural and functional insights on the Myosin superfamily. Bioinform Biol Insights 2012; 6:11-21. [PMID: 22399849 PMCID: PMC3290112 DOI: 10.4137/bbi.s8451] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The myosin superfamily is a versatile group of molecular motors involved in the transport of specific biomolecules, vesicles and organelles in eukaryotic cells. The processivity of myosins along an actin filament and transport of intracellular ‘cargo’ are achieved by generating physical force from chemical energy of ATP followed by appropriate conformational changes. The typical myosin has a head domain, which harbors an ATP binding site, an actin binding site, and a light-chain bound ‘lever arm’, followed often by a coiled coil domain and a cargo binding domain. Evolution of myosins started at the point of evolution of eukaryotes, S. cerevisiae being the simplest one known to contain these molecular motors. The coiled coil domain of the myosin classes II, V and VI in whole genomes of several model organisms display differences in the length and the strength of interactions at the coiled coil interface. Myosin II sequences have long-length coiled coil regions that are predicted to have a highly stable dimeric interface. These are interrupted, however, by regions that are predicted to be unstable, indicating possibilities of alternate conformations, associations to make thick filaments, and interactions with other molecules. Myosin V sequences retain intermittent regions of strong and weak interactions, whereas myosin VI sequences are relatively devoid of strong coiled coil motifs. Structural deviations at coiled coil regions could be important for carrying out normal biological function of these proteins.
Collapse
Affiliation(s)
- Divya P Syamaladevi
- National Centre for Biological Sciences (NCBS-TIFR), GKVK Campus, Bellary Road, Bangalore, India
| | | | | |
Collapse
|
50
|
Abstract
Cells use molecular motors, such as myosins, to move, position and segregate their organelles. Class V myosins possess biochemical and structural properties that should make them ideal actin-based cargo transporters. Indeed, studies show that class V myosins function as cargo transporters in yeast, moving a range of organelles, such as the vacuole, peroxisomes and secretory vesicles. There is also increasing evidence in vertebrate cells that class V myosins not only tether organelles to actin but also can serve as short-range, point-to-point organelle transporters, usually following long-range, microtubule-dependent organelle transport.
Collapse
|