1
|
He J, Liu S, Fang Q, Gu H, Hu Y. The Thioredoxin System in Edwardsiella piscicida Contributes to Oxidative Stress Tolerance, Motility, and Virulence. Microorganisms 2023; 11:827. [PMID: 37110252 PMCID: PMC10145099 DOI: 10.3390/microorganisms11040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Edwardsiella piscicida is an important fish pathogen that causes substantial economic losses. In order to understand its pathogenic mechanism, additional new virulence factors need to be identified. The bacterial thioredoxin system is a major disulfide reductase system, but its function is largely unknown in E. piscicida. In this study, we investigated the roles of the thioredoxin system in E. piscicida (named TrxBEp, TrxAEp, and TrxCEp, respectively) by constructing a correspondingly markerless in-frame mutant strain: ΔtrxB, ΔtrxA, and ΔtrxC, respectively. We found that (i) TrxBEp is confirmed as an intracellular protein, which is different from the prediction made by the Protter illustration; (ii) compared to the wild-type strain, ΔtrxB exhibits resistance against H2O2 stress but high sensitivity to thiol-specific diamide stress, while ΔtrxA and ΔtrxC are moderately sensitive to both H2O2 and diamide conditions; (iii) the deletions of trxBEp, trxAEp, and trxCEp damage E. piscicida's flagella formation and motility, and trxBEp plays a decisive role; (iv) deletions of trxBEp, trxAEp, and trxCEp substantially abate bacterial resistance against host serum, especially trxBEp deletion; (v) trxAEp and trxCEp, but not trxBEp, are involved in bacterial survival and replication in phagocytes; (vi) the thioredoxin system participates in bacterial dissemination in host immune tissues. These findings indicate that the thioredoxin system of E. piscicida plays an important role in stress resistance and virulence, which provides insight into the pathogenic mechanism of E. piscicida.
Collapse
Affiliation(s)
- Jiaojiao He
- School of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Su Liu
- School of Life Sciences, Hainan University, Haikou 570228, China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Qingjian Fang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hanjie Gu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou 571101, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
2
|
Acquired drug resistance interferes with the susceptibility of prostate cancer cells to metabolic stress. Cell Mol Biol Lett 2022; 27:100. [PMCID: PMC9673456 DOI: 10.1186/s11658-022-00400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Metformin is an inhibitor of oxidative phosphorylation that displays an array of anticancer activities. The interference of metformin with the activity of multi-drug resistance systems in cancer cells has been reported. However, the consequences of the acquired chemoresistance for the adaptative responses of cancer cells to metformin-induced stress and for their phenotypic evolution remain unaddressed. Methods Using a range of phenotypic and metabolic assays, we assessed the sensitivity of human prostate cancer PC-3 and DU145 cells, and their drug-resistant lineages (PC-3_DCX20 and DU145_DCX20), to combined docetaxel/metformin stress. Their adaptation responses have been assessed, in particular the shifts in their metabolic profile and invasiveness. Results Metformin increased the sensitivity of PC-3 wild-type (WT) cells to docetaxel, as illustrated by the attenuation of their motility, proliferation, and viability after the combined drug application. These effects correlated with the accumulation of energy carriers (NAD(P)H and ATP) and with the inactivation of ABC drug transporters in docetaxel/metformin-treated PC-3 WT cells. Both PC-3 WT and PC-3_DCX20 reacted to metformin with the Warburg effect; however, PC-3_DCX20 cells were considerably less susceptible to the cytostatic/misbalancing effects of metformin. Concomitantly, an epithelial–mesenchymal transition and Cx43 upregulation was seen in these cells, but not in other more docetaxel/metformin-sensitive DU145_DCX20 populations. Stronger cytostatic effects of the combined fenofibrate/docetaxel treatment confirmed that the fine-tuning of the balance between energy supply and expenditure determines cellular welfare under metabolic stress. Conclusions Collectively, our data identify the mechanisms that underlie the limited potential of metformin for the chemotherapy of drug-resistant tumors. Metformin can enhance the sensitivity of cancer cells to chemotherapy by inducing their metabolic decoupling/imbalance. However, the acquired chemoresistance of cancer cells impairs this effect, facilitates cellular adaptation to metabolic stress, and prompts the invasive front formation. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00400-1.
Collapse
|
3
|
Warzecha KW, Pudełek M, Catapano J, Madeja Z, Czyż J. Long-Term Fenofibrate Treatment Stimulates the Phenotypic Microevolution of Prostate Cancer Cells In Vitro. Pharmaceuticals (Basel) 2022; 15:1320. [PMID: 36355492 PMCID: PMC9694160 DOI: 10.3390/ph15111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 08/30/2023] Open
Abstract
Fenofibrate is a widely used anti-hyperlipidemic agonist of peroxisome proliferator-activated receptor alpha (PPARα). As a metabolic blocker, fenofibrate interferes with cancer promotion/progression via its misbalancing effects on cellular metabolism. However, the consequences of its long-term application for patients with diagnosed drug-resistant cancers are unknown. We addressed this point by tracing the phenotypic microevolution of naïve and drug-resistant prostate cancer PC3_DCX20 cells that underwent a long-term exposition to 10 μM and 50 μM fenofibrate. Their resistance to fenofibrate, metabolic profile and invasive phenotype were estimated in the control conditions and under fenofibrate-induced stress. Apparently, drug efflux systems are not effective against the cytostatic FF action. However, wtPC3 and PC3_DCX20 cells that survived the long-term 50 μM fenofibrate treatment gave rise to lineages that displayed an increased proliferation rate, lower motility in the control conditions and enhanced fenofibrate resistance. Attenuated fenofibrate bioavailability modified the pattern of PC3 microevolution, as illustrated by phenotypic differences between wtPC3/PC3_DCX20 lineages propagated in the presence of 50 μM and 10 μM fenofibrate. Collectively, our observations indicate that fenofibrate acts as a selective factor that affects prostate cancer microevolution. We also pinpoint potential consequences of long-term exposition of prostate cancer patients to metabolic blockers.
Collapse
Affiliation(s)
| | | | | | | | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Cracow, Poland
| |
Collapse
|
4
|
Thwarting of Lphn3 Functions in Cell Motility and Signaling by Cancer-Related GAIN Domain Somatic Mutations. Cells 2022; 11:cells11121913. [PMID: 35741042 PMCID: PMC9221416 DOI: 10.3390/cells11121913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer progression relies on cellular transition states accompanied by changes in the functionality of adhesion molecules. The gene for adhesion G protein-coupled receptor latrophilin-3 (aGPCR Lphn3 or ADGRL3) is targeted by tumor-specific somatic mutations predominantly affecting the conserved GAIN domain where most aGPCRs are cleaved. However, it is unclear how these GAIN domain-altering mutations impact Lphn3 function. Here, we studied Lphn3 cancer-related mutations as a proxy for revealing unknown GAIN domain functions. We found that while intra-GAIN cleavage efficiency was unaltered, most mutations produced a ligand-specific impairment of Lphn3 intercellular adhesion profile paralleled by an increase in cell-matrix actin-dependent contact structures for cells expressing the select S810L mutation. Aberrant remodeling of the intermediate filament vimentin, which was found to coincide with Lphn3-induced modification of nuclear morphology, had less impact on the nuclei of S810L expressing cells. Notoriously, receptor signaling through G13 protein was deficient for all variants bearing non-homologous amino acid substitutions, including the S810L variant. Analysis of cell migration paradigms revealed a non-cell-autonomous impairment in collective cell migration indistinctly of Lphn3 or its cancer-related variants expression, while cell-autonomous motility was potentiated in the presence of Lphn3, but this effect was abolished in S810L GAIN mutant-expressing cells. These data identify the GAIN domain as an important regulator of Lphn3-dependent cell motility, thus furthering our understanding of cellular and molecular events linking Lphn3 genetic somatic mutations to cancer-relevant pathogenesis mechanisms.
Collapse
|
5
|
Temozolomide Induces the Acquisition of Invasive Phenotype by O6-Methylguanine-DNA Methyltransferase (MGMT) + Glioblastoma Cells in a Snail-1/Cx43-Dependent Manner. Int J Mol Sci 2021; 22:ijms22084150. [PMID: 33923767 PMCID: PMC8073161 DOI: 10.3390/ijms22084150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma multiforme (GBM) recurrences after temozolomide (TMZ) treatment result from the expansion of drug-resistant and potentially invasive GBM cells. This process is facilitated by O6-Methylguanine-DNA Methyltransferase (MGMT), which counteracts alkylating TMZ activity. We traced the expansion of invasive cell lineages under persistent chemotherapeutic stress in MGMTlow (U87) and MGMThigh (T98G) GBM populations to look into the mechanisms of TMZ-induced microevolution of GBM invasiveness. TMZ treatment induced short-term, pro-invasive phenotypic shifts of U87 cells, in the absence of Snail-1 activation. They were illustrated by a transient induction of their motility and followed by the hypertrophy and the signs of senescence in scarce U87 sub-populations that survived long-term TMZ stress. In turn, MGMThigh T98G cells reacted to the long-term TMZ treatment with the permanent induction of invasiveness. Ectopic Snail-1 down-regulation attenuated this effect, whereas its up-regulation augmented T98G invasiveness. MGMTlow and MGMThigh cells both reacted to the long-term TMZ stress with the induction of Cx43 expression. However, only in MGMThigh T98G populations, Cx43 was directly involved in the induction of invasiveness, as manifested by the induction of T98G invasiveness after ectopic Cx43 up-regulation and by the opposite effect after Cx43 down-regulation. Collectively, Snail-1/Cx43-dependent signaling participates in the long-term TMZ-induced microevolution of the invasive GBM front. High MGMT activity remains a prerequisite for this process, even though MGMT-related GBM chemoresistance is not necessary for its initiation.
Collapse
|
6
|
Bioinspired Bola-Type Peptide Dendrimers Inhibit Proliferation and Invasiveness of Glioblastoma Cells in a Manner Dependent on Their Structure and Amphipathic Properties. Pharmaceutics 2020; 12:pharmaceutics12111106. [PMID: 33217976 PMCID: PMC7698760 DOI: 10.3390/pharmaceutics12111106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Natural peptides supporting the innate immune system studied at the functional and mechanistic level are a rich source of innovative compounds for application in human therapy. Increasing evidence indicates that apart from antimicrobial activity, some of them exhibit selective cytotoxicity towards tumor cells. Their cationic, amphipathic structure enables interactions with the negatively-charged membranes of microbial or malignant cells. It can be modeled in 3D by application of dendrimer chemistry. (2) Methods: Here we presented design principles, synthesis and bioactivity of branched peptides constructed from ornithine (Orn) assembled as proline (Pro)- or histidine (His)-rich dendrons and dendrimers of the bola structure. The impact of the structure and amphipathic properties of dendrons/dendrimers on two glioblastoma cell lines U87 and T98G was studied with the application of proliferation, apoptosis and cell migration assays. Cell morphology/cytoskeleton architecture was visualized by immunofluorescence microscopy. (3) Results: Dimerization of dendrons into bola dendrimers enhanced their bioactivity. Pro- and His-functionalized bola dendrimers displayed cytostatic activity, even though differences in the responsiveness of U87 and T98G cells to these compounds indicate that their bioactivity depends not only on multiple positive charge and amphipathic structure but also on cellular phenotype. (4) Conclusion: Ornithine dendrons/dendrimers represent a group of promising anti-tumor agents and the potential tools to study interrelations between drug bioactivity, its chemical properties and tumor cells' phenotype.
Collapse
|
7
|
Wróbel T, Luty M, Catapano J, Karnas E, Szczygieł M, Piwowarczyk K, Ryszawy D, Drabik G, Zuba‐Surma E, Siedlar M, Madeja Z, Elas M, Czyż J. CD44 + cells determine fenofibrate-induced microevolution of drug-resistance in prostate cancer cell populations. Stem Cells 2020; 38:1544-1556. [PMID: 32985018 PMCID: PMC7756969 DOI: 10.1002/stem.3281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022]
Abstract
Combinations of metabolic blockers (incl. fenofibrate) with chemotherapeutic drugs interfere with the drug-resistance of prostate cancer cells. However, their effect on cancer stem cells-dependent microevolution of prostate cancer malignancy remains unaddressed. Here, we hypothesize that the combined docetaxel/fenofibrate treatment prompts the selective expansion of cancer stem cells that affects the microevolution of their progenies. Accordingly, we adapted a combined in vitro/in vivo approach to identify biological and therapeutic consequences of this process. Minute subpopulations of docetaxel-resistant CD133high and/or CD44high cancer stem cell-like (SCL) cells were found in prostate cancer DU145 and PC3 cell populations. When pretreated with docetaxel, they readily differentiated into docetaxel-resistant CD44negative "bulk" cells, thus accounting for the microevolution of drug-resistant cell lineages. Combined docetaxel/fenofibrate treatment induced the generation of poly(morpho)nuclear giant cells and drug-resistant CD44high SCL cells. However, the CD44negative offspring of docetaxel- and docetaxel/fenofibrate-treated SCLs remained relatively sensitive to the combined treatment, while retaining enhanced resistance to docetaxel. Long-term propagation of drug-resistant SCL-derived lineages in the absence of docetaxel/fenofibrate resulted in their reverse microevolution toward the drug-sensitivity and invasive phenotype. Consequently, prostate tumors were able to recover from the combined docetaxel/fenofibrate stress after the initial arrest of their expansion in vivo. In conclusion, we have confirmed the potential of fenofibrate for the metronomic treatment of drug-resistant prostate tumors. However, docetaxel/fenofibrate-induced selective expansion of hyper-resistant CD44high SCL prostate cells and their "bulk" progenies prompts the microevolution of prostate tumor drug-resistance. This process can limit the implementation of metabolic chemotherapy in prostate cancer treatment.
Collapse
Affiliation(s)
- Tomasz Wróbel
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Marcin Luty
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Jessica Catapano
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Małgorzata Szczygieł
- Department of Biophysics, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Katarzyna Piwowarczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Damian Ryszawy
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Grażyna Drabik
- Department of TransplantologyInstitute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical CollegeKrakówPoland
| | - Ewa Zuba‐Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Maciej Siedlar
- Department of Clinical ImmunologyInstitute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical CollegeKrakówPoland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
8
|
High bisphenol A concentrations augment the invasiveness of tumor cells through Snail-1/Cx43/ERRγ-dependent epithelial-mesenchymal transition. Toxicol In Vitro 2019; 62:104676. [PMID: 31629898 DOI: 10.1016/j.tiv.2019.104676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/05/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
Bisphenol A (BPA) is commonly present in plastics used for food storage and preservation. The release of BPA from these products results in a permanent human exposition to BPA; however, the quality and quantity of BPA adverse effects remain a matter of controversy. The common presence of BPA in the human environment and the controversies concerning the relations of human exposition to BPA and cancer incidence justify the research on the interactions between BPA and pro-metastatic signaling in cancer cells. Here, we describe a novel BPA-reactive signaling axis that induces the epithelial-mesenchymal transition (EMT) in lung adenocarcinoma A549 cells. BPA exerted negligible effects on their properties in a wide range of concentrations (10 nM - 100 nM), whereas it considerably induced A549 invasiveness at high concentrations (10 μM). The BPA-induced EMT was illustrated by morphologic changes, E/N-cadherin switch and vimentin/Snail-1/connexin(Cx)43 up-regulation in A549 populations. It was followed by enhancement of A549 drug-resistance. Corresponding effects of BPA were observed in prostate cancer cell populations. Concomitantly, we observed increased levels and perinuclear accumulation of estrogen-related receptor gamma (ERRγ) in BPA-treated cells, its interactions with Cx43/Snail-1, and the corresponding effects of phenol red on A549 cells. Collectively, these data identify a novel, pro-metastatic Snail-1/Cx43/ERRγ signaling pathway. Its reactivity to BPA underlies the induction of cancer cells' invasiveness in the presence of high BPA concentrations in vitro. Thus, the chronic exposition of cancer cells to extrinsic and intrinsic BPA should be considered as a potential obstacle in a cancer therapy.
Collapse
|
9
|
Pudełek M, Catapano J, Kochanowski P, Mrowiec K, Janik-Olchawa N, Czyż J, Ryszawy D. Therapeutic potential of monoterpene α-thujone, the main compound of Thuja occidentalis L. essential oil, against malignant glioblastoma multiforme cells in vitro. Fitoterapia 2019; 134:172-181. [PMID: 30825580 DOI: 10.1016/j.fitote.2019.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 01/11/2023]
Abstract
Thuja occidentalis L. is indigenous for Northern America and commonly cultivated in Europe. Raw materials obtained from this tree are widely applied in the ethnomedicine and phytotherapy of numerous ailments, incl. scurvy, cystitis, rheumatism and cancer. Despite wide medicinal applications of Thuja occidentalis, still little is known on its therapeutic potential in tumor treatment. α-thujone is the main component of Thuja occidentalis essential oil, which has been suggested to possess anti-tumor activities. This monoterpene easily penetrates the blood-brain barrier. Therefore, we examined its effects on the malignancy of glioblastoma multiforme (GBM) cells, with the special emphasis on the mechanisms of its effect on cell viability and invasiveness. α-thujone exerted the attenuating effect on the viability and proliferation of GBM cells when administered at the concentrations between 100 and 500 μg/ml (660 μM - 3.2 mM). This effect was correlated with the induction of apoptosis in GBM cell populations and with considerable inhibition of GBM cells motility. Mechanistic analyses demonstrated the induction of oxidative stress and autophagy in α-thujone-treated tumor cells, whereas normal astrocytes displayed considerably lower sensitivity to α-thujone. Our observations demonstrate that α-thujone exerts pro-apoptotic and anti-invasive effects on GBM cells. They confirm the potential of α-thujone for the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Maciej Pudełek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Jessica Catapano
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Paweł Kochanowski
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Krzysztof Mrowiec
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Natalia Janik-Olchawa
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Damian Ryszawy
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
10
|
Luty M, Piwowarczyk K, Łabędź-Masłowska A, Wróbel T, Szczygieł M, Catapano J, Drabik G, Ryszawy D, Kędracka-Krok S, Madeja Z, Siedlar M, Elas M, Czyż J. Fenofibrate Augments the Sensitivity of Drug-Resistant Prostate Cancer Cells to Docetaxel. Cancers (Basel) 2019; 11:cancers11010077. [PMID: 30641904 PMCID: PMC6356694 DOI: 10.3390/cancers11010077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/31/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
Metronomic agents reduce the effective doses and adverse effects of cytostatics in cancer chemotherapy. Therefore, they can enhance the treatment efficiency of drug-resistant cancers. Cytostatic and anti-angiogenic effects of fenofibrate (FF) suggest that it can be used for the metronomic chemotherapy of drug-resistant prostate tumors. To estimate the effect of FF on the drug-resistance of prostate cancer cells, we compared the reactions of naïve and drug-resistant cells to the combined treatment with docetaxel (DCX)/mitoxantrone (MTX) and FF. FF sensitized drug-resistant DU145 and PC3 cells to DCX and MTX, as illustrated by their reduced viability and invasive potential observed in the presence of DCX/MTX and FF. The synergy of the cytostatic activities of both agents was accompanied by the inactivation of P-gp-dependent efflux, dysfunction of the microtubular system, and induction of polyploidy in DCX-resistant cells. Chemical inhibition of PPARα- and reactive oxygen species (ROS)-dependent pathways by GW6471 and N-acetyl-L-cysteine, respectively, had no effect on cell sensitivity to combined DCX/FF treatment. Instead, we observed the signs of adenosine triphosphate (ATP) deficit and autophagy in DCX/FF-treated drug-resistant cells. Furthermore, the cells that had been permanently propagated under DCX- and DCX/FF-induced stress did not acquire DCX/FF-resistance. Instead, relatively slow proliferation of DCX-resistant cells was efficiently inhibited by FF. Collectively, our observations show that FF reduces the effective doses of DCX by interfering with the drug resistance and energy metabolism of prostate cancer cells. Concomitantly, it impairs the chemotherapy-induced microevolution and expansion of DCX/FF-resistant cells. Therefore, FF can be applied as a metronomic agent to enhance the efficiency of palliative chemotherapy of prostate cancer.
Collapse
Affiliation(s)
- Marcin Luty
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Katarzyna Piwowarczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Anna Łabędź-Masłowska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Tomasz Wróbel
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Małgorzata Szczygieł
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jessica Catapano
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Grażyna Drabik
- Department of Transplantology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, 265 Wielicka Str., 30-663 Kraków, Poland.
| | - Damian Ryszawy
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków; and Proteomics and Mass Spectrometry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland.
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, 265 Wielicka Str., 30-663 Kraków, Poland.
| | - Martyna Elas
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
11
|
Bertz M, Kühn K, Koeberle SC, Müller MF, Hoelzer D, Thies K, Deubel S, Thierbach R, Kipp AP. Selenoprotein H controls cell cycle progression and proliferation of human colorectal cancer cells. Free Radic Biol Med 2018; 127:98-107. [PMID: 29330096 DOI: 10.1016/j.freeradbiomed.2018.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/19/2017] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
Selenoprotein H (SELENOH) is supposed to be involved in redox regulation as well as in tumorigenesis. However, its role in healthy and transformed cells of the gastrointestinal tract remains elusive. We analyzed SELENOH expression in cells depending on their selenium supply and differentiation status and found that SELENOH expression was increased in tumor tissue, in undifferentiated epithelial cells from mice and in colorectal cancer lines as compared to more differentiated ones. Knockdown studies in human colorectal cancer cells revealed that repression of SELENOH decreased cellular differentiation and increased proliferation and migration. In addition, SELENOH knockdown cells have a higher competence to form colonies or tumor xenografts. In parallel, they show a faster cell cycle transition. The high levels of SELENOH in tumors as well as in undifferentiated, proliferative cells together with its inhibitory effects on proliferation and G1/S phase transition suggest SELENOH as a key regulator for cell cycle progression and for prevention of uncontrolled proliferation. As SELENOH expression is highly dependent on the selenium status, effects of selenium supplementation on cancer initiation and progression appear to involve SELENOH.
Collapse
Affiliation(s)
- Martin Bertz
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| | - Katrin Kühn
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| | - Solveigh C Koeberle
- Department of Molecular Nutritional Physiology, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| | - Mike F Müller
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| | - Doerte Hoelzer
- Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| | - Karolin Thies
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| | - Stefanie Deubel
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, D-14558 Nuthetal, Germany
| | - René Thierbach
- Department of Human Nutrition, Institute of Nutrition, University of Jena, Jena D-07743, Germany
| | - Anna P Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutrition, University of Jena, Jena D-07743, Germany.
| |
Collapse
|
12
|
Hu J, Han J, Li H, Zhang X, Liu LL, Chen F, Zeng B. Human Embryonic Kidney 293 Cells: A Vehicle for Biopharmaceutical Manufacturing, Structural Biology, and Electrophysiology. Cells Tissues Organs 2018; 205:1-8. [PMID: 29393161 DOI: 10.1159/000485501] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Mammalian cells, e.g., CHO, BHK, HEK293, HT-1080, and NS0 cells, represent important manufacturing platforms in bioengineering. They are widely used for the production of recombinant therapeutic proteins, vaccines, anticancer agents, and other clinically relevant drugs. HEK293 (human embryonic kidney 293) cells and their derived cell lines provide an attractive heterologous system for the development of recombinant proteins or adenovirus productions, not least due to their human-like posttranslational modification of protein molecules to provide the desired biological activity. Secondly, they also exhibit high transfection efficiency yielding high-quality recombinant proteins. They are easy to maintain and express with high fidelity membrane proteins, such as ion channels and transporters, and thus are attractive for structural biology and electrophysiology studies. In this article, we review the literature on HEK293 cells regarding their origins but also stress their advancements into the different cell lines engineered and discuss some significant aspects which make them versatile systems for biopharmaceutical manufacturing, drug screening, structural biology research, and electrophysiology applications.
Collapse
|
13
|
Sroka J, Zimolag E, Lasota S, Korohoda W, Madeja Z. Electrotaxis: Cell Directional Movement in Electric Fields. Methods Mol Biol 2018; 1749:325-340. [PMID: 29526007 DOI: 10.1007/978-1-4939-7701-7_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Electrotaxis plays an important role during embryogenesis, inflammation, wound healing, and tumour metastasis. However, the mechanisms at play during electrotaxis are still poorly understood. Therefore intensive studies on signaling pathways involved in this phenomenon should be carried out. In this chapter, we described an experimental system for studying electrotaxis of Amoeba proteus, mouse embryonic fibroblasts (MEF), Walker carcinosarcoma cells WC256, and bone marrow adherent cells (BMAC).
Collapse
Affiliation(s)
- Jolanta Sroka
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Krakow, Poland.
| | - Eliza Zimolag
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Krakow, Poland
| | - Slawomir Lasota
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Krakow, Poland
| | - Wlodzimierz Korohoda
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Krakow, Poland
| | - Zbigniew Madeja
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
The expression and activity of thioredoxin reductase 1 splice variants v1 and v2 regulate the expression of genes associated with differentiation and adhesion. Biosci Rep 2015; 35:BSR20150236. [PMID: 26464515 PMCID: PMC4660583 DOI: 10.1042/bsr20150236] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/08/2015] [Indexed: 11/21/2022] Open
Abstract
Thioredoxin reductase (TrxR1) is involved in redox homoeostasis and cellular differentiation. In the present study, we demonstrate that overexpression of TrxR1 affects genes associated with differentiation and that differentiation increased TrxR1 expression. The TrxR1 splice variant TXNRD1_v2 was also studied in this context. The mammalian redox-active selenoprotein thioredoxin reductase (TrxR1) is a main player in redox homoeostasis. It transfers electrons from NADPH to a large variety of substrates, particularly to those containing redox-active cysteines. Previously, we reported that the classical form of cytosolic TrxR1 (TXNRD1_v1), when overexpressed in human embryonic kidney cells (HEK-293), prompted the cells to undergo differentiation [Nalvarte et al. (2004) J. Biol. Chem. 279, 54510–54517]. In the present study, we show that several genes associated with differentiation and adhesion are differentially expressed in HEK-293 cells stably overexpressing TXNRD1_v1 compared with cells expressing its splice variant TXNRD1_v2. Overexpression of these two splice forms resulted in distinctive effects on various aspects of cellular functions including gene regulation patterns, alteration of growth rate, migration and morphology and susceptibility to selenium-induced toxicity. Furthermore, differentiation of the neuroblastoma cell line SH-SY5Y induced by all-trans retinoic acid (ATRA) increased both TXNRD1_v1 and TXNRD1_v2 expressions along with several of the identified genes associated with differentiation and adhesion. Selenium supplementation in the SH-SY5Y cells also induced a differentiated morphology and changed expression of the adhesion protein fibronectin 1 and the differentiation marker cadherin 11, as well as different temporal expression of the studied TXNRD1 variants. These data suggest that both TXNRD1_v1 and TXNRD1_v2 have distinct roles in differentiation, possibly by altering the expression of the genes associated with differentiation, and further emphasize the importance in distinguishing each unique action of different TrxR1 splice forms, especially when studying the gene silencing or knockout of TrxR1.
Collapse
|
15
|
Mężyk-Kopeć R, Wyroba B, Stalińska K, Próchnicki T, Wiatrowska K, Kilarski WW, Swartz MA, Bereta J. ADAM17 Promotes Motility, Invasion, and Sprouting of Lymphatic Endothelial Cells. PLoS One 2015; 10:e0132661. [PMID: 26176220 PMCID: PMC4503755 DOI: 10.1371/journal.pone.0132661] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/18/2015] [Indexed: 02/04/2023] Open
Abstract
Tumor-associated lymphatic vessels actively participate in tumor progression and dissemination. ADAM17, a sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules, is believed to promote tumor development, facilitating both tumor cell proliferation and migration, as well as tumor angiogenesis. In this work we addressed the issue of whether ADAM17 may also promote tumor lymphangiogenesis. First, we found that ADAM17 is important for the migratory potential of immortalized human dermal lymphatic endothelial cells (LEC). When ADAM17 was stably silenced in LEC, their proliferation was not affected, but: (i) single-cell motility, (ii) cell migration through a 3D Matrigel/collagen type I matrix, and (iii) their ability to form sprouts in a 3D matrix were significantly diminished. The differences in the cell motility between ADAM17-proficient and ADAM17-silenced cells were eliminated by inhibitors of EGFR and HER2, indicating that ADAM17-mediated shedding of growth factors accounts for LEC migratory potential. Interestingly, ADAM17 depletion affected the integrin surface expression/functionality in LEC. ADAM17-silenced cells adhered to plastic, type I collagen, and fibronectin faster than their ADAM17-proficient counterparts. The difference in adhesion to fibronectin was abolished by a cyclic RGD peptide, emphasizing the involvement of integrins in the process. Using a soluble receptor array, we identified BIG-H3 among several candidate proteins involved in the phenotypic and behavioral changes of LEC upon ADAM17 silencing. In additional assays, we confirmed the increased expression of BIG-H3, as well as TGFβ2 in ADAM17-silenced LEC. The antilymphangiogenic effects of ADAM17 silencing in lymphatic endothelial cells suggest further relevance of ADAM17 as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Renata Mężyk-Kopeć
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- Institute of Bioengineering and Swiss Institute for Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, United States of America
| | - Barbara Wyroba
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Krystyna Stalińska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Tomasz Próchnicki
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Karolina Wiatrowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Witold W. Kilarski
- Institute of Bioengineering and Swiss Institute for Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, United States of America
| | - Melody A. Swartz
- Institute of Bioengineering and Swiss Institute for Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, United States of America
| | - Joanna Bereta
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- * E-mail:
| |
Collapse
|
16
|
Kozdęba M, Borowczyk J, Zimoląg E, Wasylewski M, Dziga D, Madeja Z, Drukala J. Microcystin-LR affects properties of human epidermal skin cells crucial for regenerative processes. Toxicon 2014; 80:38-46. [DOI: 10.1016/j.toxicon.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/03/2014] [Accepted: 01/09/2014] [Indexed: 11/29/2022]
|
17
|
ADAM17 silencing in mouse colon carcinoma cells: the effect on tumoricidal cytokines and angiogenesis. PLoS One 2012; 7:e50791. [PMID: 23251384 PMCID: PMC3519469 DOI: 10.1371/journal.pone.0050791] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022] Open
Abstract
ADAM17 (a disintegrin and metalloprotease 17) is a major sheddase for numerous growth factors, cytokines, receptors, and cell adhesion molecules and is often overexpressed in malignant cells. It is generally accepted that ADAM17 promotes tumor development via activating growth factors from the EGF family, thus facilitating autocrine stimulation of tumor cell proliferation and migration. Here we show, using MC38CEA murine colon carcinoma model, that ADAM17 also regulates tumor angiogenesis and cytokine profile. When ADAM17 was silenced in MC38CEA cells, in vivo tumor growth and in vitro cell motility were significantly diminished, but no effect was seen on in vitro cell proliferation. ADAM17-silencing was accompanied by decreased in vitro expression of vascular endothelial growth factor-A and matrix metalloprotease-9, which was consistent with the limited angiogenesis and slower growth seen in ADAM17-silenced tumors. Among the growth factors susceptible to shedding by ADAM17, neuregulin-1 was the only candidate to mediate the effects of ADAM17 on MC38CEA motility and tumor angiogenesis. Concentrations of TNF and IFNγ, cytokines that synergistically induced proapoptotic effects on MC38CEA cells, were significantly elevated in the lysates of ADAM17-silenced tumors compared to mock transfected controls, suggesting a possible role for ADAM17 in host immune suppression. These results introduce new, complex roles of ADAM17 in tumor progression, including its impact on the anti-tumor immune response.
Collapse
|
18
|
Abstract
The discovery of multiple selenoproteins has raised tantalizing questions about their role in maintaining normal cellular function. Unfortunately, many of these remain inadequately investigated. While they have a role in maintaining redox balance, other functions are becoming increasingly recognized. As the roles of these selenoproteins are further characterized, a better understanding of the true physiological significance of this trace element will arise. This knowledge will be essential in defining optimum intakes to achieve cellular homeostasis in order to optimize health, including a reduction in cancer, for diverse populations. Human variation in the response to selenium likely reflects significant interactions between the type and amounts of selenium consumed with the genome and a host of environmental factors including the totality of the diet, as discussed in this review.
Collapse
Affiliation(s)
- Cindy D. Davis
- Nutritional Science Research Group, National Cancer Institute, Rockville, Maryland 20892;,
- Current address: Office of Dietary Supplements, National Institutes of Health, Rockville, Maryland 20892
| | - Petra A. Tsuji
- Department of Biological Sciences, Towson University, Towson, Maryland 21252
| | - John A. Milner
- Nutritional Science Research Group, National Cancer Institute, Rockville, Maryland 20892;,
| |
Collapse
|
19
|
Thom SR, Bhopale VM, Milovanova TN, Yang M, Bogush M. Thioredoxin reductase linked to cytoskeleton by focal adhesion kinase reverses actin S-nitrosylation and restores neutrophil β(2) integrin function. J Biol Chem 2012; 287:30346-57. [PMID: 22778269 DOI: 10.1074/jbc.m112.355875] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The investigation goal was to identify mechanisms for reversal of actin S-nitrosylation in neutrophils after exposure to high oxygen partial pressures. Prior work has shown that hyperoxia causes S-nitrosylated actin (SNO-actin) formation, which mediates β(2) integrin dysfunction, and these changes can be reversed by formylmethionylleucylphenylalanine or 8-bromo-cyclic GMP. Herein we show that thioredoxin reductase (TrxR) is responsible for actin denitrosylation. Approximately 80% of cellular TrxR is localized to the cytosol, divided between the G-actin and short filamentous actin (sF-actin) fractions based on Triton solubility of cell lysates. TrxR linkage to sF-actin requires focal adhesion kinase (FAK) based on immunoprecipitation studies. S-Nitrosylation accelerates actin filament turnover (by mechanisms described previously (Thom, S. R., Bhopale, V. M., Yang, M., Bogush, M., Huang, S., and Milovanova, T. (2011) Neutrophil β(2) integrin inhibition by enhanced interactions of vasodilator stimulated phosphoprotein with S-nitrosylated actin. J. Biol. Chem. 286, 32854-32865), which causes FAK to disassociate from sF-actin. TrxR subsequently dissociates from FAK, and the physical separation from actin impedes denitrosylation. If SNO-actin is photochemically reduced with UV light or if actin filament turnover is impeded by incubations with cytochalasin D, latrunculin B, 8-bromo-cGMP, or formylmethionylleucylphenylalanine, FAK and TrxR reassociate with sF-actin and cause SNO-actin removal. FAK-TrxR association can also be demonstrated using isolated enzymes in ex vivo preparations. Uniquely, the FAK kinase domain is the site of TrxR linkage. We conclude that through its scaffold function, FAK influences TrxR activity and actin S-nitrosylation.
Collapse
Affiliation(s)
- Stephen R Thom
- Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
20
|
DU-145 prostate carcinoma cells that selectively transmigrate narrow obstacles express elevated levels of Cx43. Cell Mol Biol Lett 2011; 16:625-37. [PMID: 21910090 PMCID: PMC6275569 DOI: 10.2478/s11658-011-0027-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/06/2011] [Indexed: 12/16/2022] Open
Abstract
The formation of aqueous intercellular channels mediating gap junctional intercellular coupling (GJIC) is a canonical function of connexins (Cx). In contrast, mechanisms of GJIC-independent involvement of connexins in cancer formation and metastasis remain a matter of debate. Because of the role of Cx43 in the determination of carcinoma cell invasive potential, we addressed the problem of the possible Cx43 involvement in early prostate cancer invasion. For this purpose, we analysed Cx43-positive DU-145 cell subsets established from the progenies of the cells most readily transmigrating microporous membranes. These progenies displayed motile activity similar to the control DU-145 cells but were characterized by elevated Cx43 expression levels and GJIC intensity. Thus, apparent links exist between Cx43 expression and transmigration potential of DU-145 cells. Moreover, Cx43 expression profiles in the analysed DU-145 subsets were not affected by intercellular contacts and chemical inhibition of GJIC during the transmigration. Our observations indicate that neither cell motility nor GJIC determines the transmigration efficiency of DU-145 cells. However, we postulate that selective transmigration of prostate cancer cells expressing elevated levels of Cx43 expression may be crucial for the "leading front" formation during cancer invasion.
Collapse
|
21
|
Drukala J, Urbanska K, Wilk A, Grabacka M, Wybieralska E, Del Valle L, Madeja Z, Reiss K. ROS accumulation and IGF-IR inhibition contribute to fenofibrate/PPARalpha -mediated inhibition of glioma cell motility in vitro. Mol Cancer 2010; 9:159. [PMID: 20569465 PMCID: PMC2912247 DOI: 10.1186/1476-4598-9-159] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 06/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glioblastomas are characterized by rapid cell growth, aggressive CNS infiltration, and are resistant to all known anticancer regimens. Recent studies indicate that fibrates and statins possess anticancer potential. Fenofibrate is a potent agonist of peroxisome proliferator activated receptor alpha (PPARalpha) that can switch energy metabolism from glycolysis to fatty acid beta-oxidation, and has low systemic toxicity. Fenofibrate also attenuates IGF-I-mediated cellular responses, which could be relevant in the process of glioblastoma cell dispersal. METHODS The effects of fenofibrate on Glioma cell motility, IGF-I receptor (IGF-IR) signaling, PPARalpha activity, reactive oxygen species (ROS) metabolism, mitochondrial potential, and ATP production were analyzed in human glioma cell lines. RESULTS Fenofibrate treatment attenuated IGF-I signaling responses and repressed cell motility of LN-229 and T98G Glioma cell lines. In the absence of fenofibrate, specific inhibition of the IGF-IR had only modest effects on Glioma cell motility. Further experiments revealed that PPARalpha-dependent accumulation of ROS is a strong contributing factor in Glioma cell lines responses to fenofibrate. The ROS scavenger, N-acetyl-cysteine (NAC), restored cell motility, improved mitochondrial potential, and increased ATP levels in fenofibrate treated Glioma cell lines. CONCLUSIONS Our results indicate that although fenofibrate-mediated inhibition of the IGF-IR may not be sufficient in counteracting Glioma cell dispersal, PPARalpha-dependent metabolic switch and the resulting ROS accumulation strongly contribute to the inhibition of these devastating brain tumor cells.
Collapse
Affiliation(s)
- Justyna Drukala
- Neurological Cancer Research, Stanley S Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Baran B, Bechyne I, Siedlar M, Szpak K, Mytar B, Sroka J, Laczna E, Madeja Z, Zembala M, Czyz J. Blood monocytes stimulate migration of human pancreatic carcinoma cells in vitro: the role of tumour necrosis factor - alpha. Eur J Cell Biol 2009; 88:743-52. [PMID: 19782426 DOI: 10.1016/j.ejcb.2009.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 07/03/2009] [Accepted: 08/03/2009] [Indexed: 01/04/2023] Open
Abstract
In some types of cancers, tumour-infiltrating monocytes/macrophages (TIM) may be responsible for the formation of an invasive microenvironment in a manner dependent on the secretion of soluble mediators such as tumour necrosis factor-alpha (TNF). Human pancreatic carcinoma (HPC-4) cells are able to induce TNF production by monocytes. Here, the effect of human peripheral blood monocytes, precursors of TIM, on the motility of co-cultured HPC-4 cells, was directly analysed in vitro. A phenotypic transition, i.e., the appearance of rear-front polarised HPC-4 cells paralleled by their increased motility, and increased motility of monocytes, were observed. This effect was attenuated when HPC-4 cells and monocytes were co-cultured in the presence of inhibitors of TNF production and anti-TNF monoclonal antibodies, indicating the specific role of this cytokine in determining paracrine loops between monocytes and cancer cells. Moreover, exogenous TNF induced HPC-4 cell motility concomitantly to the appearance of cellular features characteristic for epithelial-mesenchymal transition (EMT) such as rear-front polarisation, rearrangements of the actin cytoskeleton characteristic for motile cells and the induction of Snail-1 expression. Since cell movement is crucial for cancer invasion and the formation of metastases, these findings demonstrate an EMT-dependent mechanism of cancer progression which acts through the phenotypic transition of pancreatic cancer cells dependent on monocyte-derived TNF.
Collapse
Affiliation(s)
- Bartłomiej Baran
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Damdimopoulou PE, Miranda-Vizuete A, Arnér ESJ, Gustafsson JA, Damdimopoulos AE. The human thioredoxin reductase-1 splice variant TXNRD1_v3 is an atypical inducer of cytoplasmic filaments and cell membrane filopodia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1588-96. [PMID: 19654027 DOI: 10.1016/j.bbamcr.2009.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 07/13/2009] [Accepted: 07/27/2009] [Indexed: 01/06/2023]
Abstract
Thioredoxin reductases are important selenoproteins maintaining cellular redox balance and regulating several redox dependent processes in apoptosis, cell proliferation and differentiation. Specific functions of dedicated splice variants may add further complexity to the functions of these proteins. We show here that a splice variant of human thioredoxin reductase 1, TXNRD1_v3, forms both dynamic cytoplasmic filaments and provokes instantaneous formation of dynamic cell membrane protrusions identified as filopodia. Using truncated versions of the protein we found that both the cytoplasmic filaments and the filopodia formation were exclusively dependent on the glutaredoxin domain of the protein. Interestingly, actin polymerization was required for filopodia formation triggered by TXNRD1_v3, but not for generation of cytoplasmic filaments. We conclude that the glutaredoxin domain of TXNRD1_v3 is an atypical regulator of the cell cytoskeleton that potently induces formation of highly ordered cytoplasmic filaments and cell membrane filopodia.
Collapse
|
24
|
Sroka J, Kordecka A, Włosiak P, Madeja Z, Korohoda W. Separation methods for isolation of human polymorphonuclear leukocytes affect their motile activity. Eur J Cell Biol 2009; 88:531-9. [PMID: 19560229 DOI: 10.1016/j.ejcb.2009.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 05/21/2009] [Accepted: 05/29/2009] [Indexed: 11/30/2022] Open
Abstract
Five commonly used methods for the isolation of human polymorphonuclear leukocytes (PMNLs) from blood and their subsequent effect on cell motile activity were compared. Although all methods (isolation from blood clots, hemolysis of erythrocytes in hypotonic solutions, and sedimentation with the use of Percoll, Ficoll 400 or Dextran T 500 solutions) preserved cell viability, they demonstrated different effects on cell spreading and the speed of spontaneous cell movement. The highest motile activity was shown by PMNLs separated from blood clots and Percoll solutions. In the presence of formylated peptides, N-FMLP-mediated movement was markedly stimulated in PMNLs separated by all five methods, but cells isolated with the use of Dextran T 500 or Ficoll 400 were relatively slower than those isolated with other methods. This suggests that the cells had preserved the sensitivity of their receptors specific for ligands stimulating chemokinesis (chemotaxis) after all five methods of separation. Immunofluorescence observations showed that PMNLs isolated in the presence of FITC-Dextran exhibited polysaccharide-coated surfaces with receptor proteins extended above that coat - an observation which explains why cell coating with polysaccharides does not disturb cell phenotyping with flow cytometry and FACS methods.
Collapse
Affiliation(s)
- Jolanta Sroka
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland
| | | | | | | | | |
Collapse
|
25
|
Arnér ESJ. Focus on mammalian thioredoxin reductases--important selenoproteins with versatile functions. Biochim Biophys Acta Gen Subj 2009; 1790:495-526. [PMID: 19364476 DOI: 10.1016/j.bbagen.2009.01.014] [Citation(s) in RCA: 498] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 01/30/2009] [Indexed: 02/07/2023]
Abstract
Thioredoxin systems, involving redox active thioredoxins and thioredoxin reductases, sustain a number of important thioredoxin-dependent pathways. These redox active proteins support several processes crucial for cell function, cell proliferation, antioxidant defense and redox-regulated signaling cascades. Mammalian thioredoxin reductases are selenium-containing flavoprotein oxidoreductases, dependent upon a selenocysteine residue for reduction of the active site disulfide in thioredoxins. Their activity is required for normal thioredoxin function. The mammalian thioredoxin reductases also display surprisingly multifaceted properties and functions beyond thioredoxin reduction. Expressed from three separate genes (in human named TXNRD1, TXNRD2 and TXNRD3), the thioredoxin reductases can each reduce a number of different types of substrates in different cellular compartments. Their expression patterns involve intriguingly complex transcriptional mechanisms resulting in several splice variants, encoding a number of protein variants likely to have specialized functions in a cell- and tissue-type restricted manner. The thioredoxin reductases are also targeted by a number of drugs and compounds having an impact on cell function and promoting oxidative stress, some of which are used in treatment of rheumatoid arthritis, cancer or other diseases. However, potential specific or essential roles for different forms of human or mouse thioredoxin reductases in health or disease are still rather unclear, although it is known that at least the murine Txnrd1 and Txnrd2 genes are essential for normal development during embryogenesis. This review is a survey of current knowledge of mammalian thioredoxin reductase function and expression, with a focus on human and mouse and a discussion of the striking complexity of these proteins. Several yet open questions regarding their regulation and roles in different cells or tissues are emphasized. It is concluded that the intriguingly complex regulation and function of mammalian thioredoxin reductases within the cellular context and in intact mammals strongly suggests that their functions are highly fi ne-tuned with the many pathways involving thioredoxins and thioredoxin-related proteins. These selenoproteins furthermore propagate many functions beyond a reduction of thioredoxins. Aberrant regulation of thioredoxin reductases, or a particular dependence upon these enzymes in diseased cells, may underlie their presumed therapeutic importance as enzymatic targets using electrophilic drugs. These reductases are also likely to mediate several of the effects on health and disease that are linked to different levels of nutritional selenium intake. The thioredoxin reductases and their splice variants may be pivotal components of diverse cellular signaling pathways, having importance in several redox-related aspects of health and disease. Clearly, a detailed understanding of mammalian thioredoxin reductases is necessary for a full comprehension of the thioredoxin system and of selenium dependent processes in mammals.
Collapse
Affiliation(s)
- Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|