1
|
Wang Z, Zhang K, Zhong C, Zhu Z, Zheng X, Yang P, Che B, Lu Y, Zhang Y, Xu T. Plasma Human Cartilage Glycoprotein-39 and Cognitive Impairment After Acute Ischemic Stroke. J Am Heart Assoc 2025; 14:e036790. [PMID: 39819010 DOI: 10.1161/jaha.124.036790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Our study aimed at evaluating the association between plasma human cartilage glycoprotein-39 (YKL-40) and cognitive impairment at 3 months among patients with acute ischemic stroke. METHODS AND RESULTS Plasma YKL-40 levels were measured in 604 participants from the China Antihypertensive Trial in Acute Ischemic Stroke. Cognitive impairment outcomes were assessed at 3 months poststroke using the Mini-Mental State Examination and the Montreal Cognitive Assessment. According to the Mini-Mental State Examination score, patients in the highest quartile of YKL-40 had a 2.01-fold (95% CI, 1.23-3.29; P for trend=0.009) risk of poststroke cognitive impairment compared with those in the lowest quartile. Each 1 SD difference of logarithm-transformed YKL-40 was associated with a 28% (95% CI, 7-53) increased risk for the outcome. The multiple-adjusted spline regression model confirmed dose-response relationships between YKL-40 and poststroke cognitive impairment (P for linearity=0.01). Adding YKL-40 to a model containing conventional risk factors significantly improved the discriminatory power (area under the receiver operating characteristic curve improved by 0.02, P=0.03). When cognitive impairment was defined using the Montreal Cognitive Assessment score, similar findings were observed. CONCLUSIONS Elevated YKL-40 levels were associated with an increased risk of cognitive impairment at 3 months among patients with acute ischemic stroke. REGISTRATION URL: clinicaltrials.gov; Unique Identifier: NCT01840072.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Neurology, Affiliated Hospital of Nantong University Medical School of Nantong University Nantong China
| | - Kaixin Zhang
- Department of Clinical Research Center Wuxi No. 2 People's Hospital (Jiangnan University Medical Center) Wuxi China
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Chongke Zhong
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Xiaowei Zheng
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Pinni Yang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Bizhong Che
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Yaling Lu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology Suzhou Medical College of Soochow University Suzhou China
| | - Tian Xu
- Department of Neurology Affiliated Hospital of Nantong University Nantong China
| |
Collapse
|
2
|
Henao‐Restrepo J, López‐Murillo C, Valderrama‐Carmona P, Orozco‐Santa N, Gomez J, Gutiérrez‐Vargas J, Moraga R, Toledo J, Littau JL, Härtel S, Arboleda‐Velásquez JF, Sepulveda‐Falla D, Lopera F, Cardona‐Gómez GP, Villegas A, Posada‐Duque R. Gliovascular alterations in sporadic and familial Alzheimer's disease: APOE3 Christchurch homozygote glioprotection. Brain Pathol 2023; 33:e13119. [PMID: 36130084 PMCID: PMC10041169 DOI: 10.1111/bpa.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
In response to brain insults, astrocytes become reactive, promoting protection and tissue repair. However, astroglial reactivity is typical of brain pathologies, including Alzheimer's disease (AD). Considering the heterogeneity of the reactive response, the role of astrocytes in the course of different forms of AD has been underestimated. Colombia has the largest human group known to have familial AD (FAD). This group carries the autosomal dominant and fully penetrant mutation E280A in PSEN1, which causes early-onset AD. Recently, our group identified an E280A carrier who did not develop FAD. The individual was homozygous for the Christchurch mutation R136S in APOE3 (APOEch). Remarkably, APOE is the main genetic risk factor for developing sporadic AD (SAD) and most of cerebral ApoE is produced by astroglia. Here, we characterized astrocyte properties related to reactivity, glutamate homeostasis, and structural integrity of the gliovascular unit (GVU), as factors that could underlie the pathogenesis or protection of AD. Specifically, through histological and 3D microscopy analyses of postmortem samples, we briefly describe the histopathology and cytoarchitecture of the frontal cortex of SAD, FAD, and APOEch, and demonstrate that, while astrodegeneration and vascular deterioration are prominent in SAD, FAD is characterized by hyperreactive-like glia, and APOEch displays the mildest astrocytic and vascular alterations despite having the highest burden of Aβ. Notably, astroglial, gliovascular, and vascular disturbances, as well as brain cell death, correlate with the specific astrocytic phenotypes identified in each condition. This study provides new insights into the potential relevance of the gliovasculature in the development and protection of AD. To our knowledge, this is the first study assessing the components of the GVU in human samples of SAD, FAD, and APOEch.
Collapse
Affiliation(s)
- Julián Henao‐Restrepo
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Carolina López‐Murillo
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Pablo Valderrama‐Carmona
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Natalia Orozco‐Santa
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Johana Gomez
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaSIU, Universidad de AntioquiaMedellínColombia
| | - Johanna Gutiérrez‐Vargas
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Health Sciences FacultyRemington University CorporationMedellínColombia
| | - Renato Moraga
- Biomedical Neuroscience Institute BNI, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jorge Toledo
- Biomedical Neuroscience Institute BNI, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jessica Lisa Littau
- Molecular Neuropathology of Alzheimer's DiseaseInstitute of Neuropathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Steffen Härtel
- Biomedical Neuroscience Institute BNI, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Joseph F. Arboleda‐Velásquez
- Schepens Eye Research Institute of Mass Eye and Ear, Department of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Diego Sepulveda‐Falla
- Molecular Neuropathology of Alzheimer's DiseaseInstitute of Neuropathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaSIU, Universidad de AntioquiaMedellínColombia
| | - Gloria Patricia Cardona‐Gómez
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Andrés Villegas
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaSIU, Universidad de AntioquiaMedellínColombia
| | - Rafael Posada‐Duque
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| |
Collapse
|
3
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
4
|
Tarawneh R, Penhos E. The gut microbiome and Alzheimer's disease: Complex and bidirectional interactions. Neurosci Biobehav Rev 2022; 141:104814. [PMID: 35934087 PMCID: PMC9637435 DOI: 10.1016/j.neubiorev.2022.104814] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
Abstract
Structural and functional alterations to the gut microbiome, referred to as gut dysbiosis, have emerged as potential key mediators of neurodegeneration and Alzheimer disease (AD) pathogenesis through the "gut -brain" axis. Emerging data from animal and clinical studies support an important role for gut dysbiosis in mediating neuroinflammation, central and peripheral immune dysregulation, abnormal brain protein aggregation, and impaired intestinal and brain barrier permeability, leading to neuronal loss and cognitive impairment. Gut dysbiosis has also been shown to directly influence various mechanisms involved in neuronal growth and repair, synaptic plasticity, and memory and learning functions. Aging and lifestyle factors including diet, exercise, sleep, and stress influence AD risk through gut dysbiosis. Furthermore, AD is associated with characteristic gut microbial signatures which offer value as potential markers of disease severity and progression. Together, these findings suggest the presence of a complex bidirectional relationship between AD and the gut microbiome and highlight the utility of gut modulation strategies as potential preventative or therapeutic strategies in AD. We here review the current literature regarding the role of the gut-brain axis in AD pathogenesis and its potential role as a future therapeutic target in AD treatment and/or prevention.
Collapse
Affiliation(s)
- Rawan Tarawneh
- Department of Neurology, Center for Memory and Aging, Alzheimer Disease Research Center, The University of New Mexico, Albuquerque, NM 87106, USA.
| | - Elena Penhos
- College of Medicine, The Ohio State University, Columbus, OH, USA 43210
| |
Collapse
|
5
|
Dehghan M, Fathinejad F, Farzaei MH, Barzegari E. In silico unraveling of molecular anti-neurodegenerative profile of Citrus medica flavonoids against novel pharmaceutical targets. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Tang Y, Wang H, Nie K, Gao Y, Su H, Wang Z, Lu F, Huang W, Dong H. Traditional herbal formula Jiao-tai-wan improves chronic restrain stress-induced depression-like behaviors in mice. Biomed Pharmacother 2022; 153:113284. [PMID: 35717786 DOI: 10.1016/j.biopha.2022.113284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Jiao-tai-wan (JTW) has been often used to treat insomnia and diabetes mellitus. Recent studies found its antidepressant activity, but the related mechanism is not clear. This study is to evaluate the therapeutic effects of JTW on chronic restraint stress (CRS)-induced depression mice and explore the potential mechanisms. METHODS CRS was used to set up a depression model. Mice in different groups were treated with 0.9 % saline, JTW and fluoxetine. After the last day of CRS, the behavioral tests were conducted. The levels of neurotransmitters, inflammatory cytokines and HPA axis index were detected and the protein expressions of NLRP3 inflammasome complex were determined. H&E, NISSL, TUNEL and immunofluorescence staining were used to observe histopathological changes and the activation of microglia and astrocytes. The potential mechanisms were explored via network pharmacology and verified by Western blot. RESULTS The assessment of liver and kidney function showed that JTW was non-toxic. Behavioral tests proved that JTW can effectively ameliorate depression-like symptoms in CRS mice, which may be related to the inhibition of NLRP3 inflammasome activation. JTW can also improve the inflammatory state and HPA axis hyperactivity in mice, and has a protective effect on CRS-induced hippocampal neurons damage. The network pharmacology analysis and the results of Western blot suggested that the antidepressant effects of JTW may be related to the MAPK signaling pathway. CONCLUSION Our findings indicated that JTW may exert antidepressant effects in CRS-induced mice by inhibiting NLRP3 inflammasome activation and improving inflammatory state, and MAPK signaling pathway may also be involved.
Collapse
Affiliation(s)
- Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenya Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
7
|
Dolotov OV, Inozemtseva LS, Myasoedov NF, Grivennikov IA. Stress-Induced Depression and Alzheimer's Disease: Focus on Astrocytes. Int J Mol Sci 2022; 23:4999. [PMID: 35563389 PMCID: PMC9104432 DOI: 10.3390/ijms23094999] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases and depression are multifactorial disorders with a complex and poorly understood physiopathology. Astrocytes play a key role in the functioning of neurons in norm and pathology. Stress is an important factor for the development of brain disorders. Here, we review data on the effects of stress on astrocyte function and evidence of the involvement of astrocyte dysfunction in depression and Alzheimer's disease (AD). Stressful life events are an important risk factor for depression; meanwhile, depression is an important risk factor for AD. Clinical data indicate atrophic changes in the same areas of the brain, the hippocampus and prefrontal cortex (PFC), in both pathologies. These brain regions play a key role in regulating the stress response and are most vulnerable to the action of glucocorticoids. PFC astrocytes are critically involved in the development of depression. Stress alters astrocyte function and can result in pyroptotic death of not only neurons, but also astrocytes. BDNF-TrkB system not only plays a key role in depression and in normalizing the stress response, but also appears to be an important factor in the functioning of astrocytes. Astrocytes, being a target for stress and glucocorticoids, are a promising target for the treatment of stress-dependent depression and AD.
Collapse
Affiliation(s)
- Oleg V. Dolotov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Ludmila S. Inozemtseva
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Nikolay F. Myasoedov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| | - Igor A. Grivennikov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (O.V.D.); (L.S.I.); (N.F.M.)
| |
Collapse
|
8
|
Cacabelos R, Naidoo V, Martínez-Iglesias O, Corzo L, Cacabelos N, Pego R, Carril JC. Pharmacogenomics of Alzheimer's Disease: Novel Strategies for Drug Utilization and Development. Methods Mol Biol 2022; 2547:275-387. [PMID: 36068470 DOI: 10.1007/978-1-0716-2573-6_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alzheimer's disease (AD) is a priority health problem in developed countries with a high cost to society. Approximately 20% of direct costs are associated with pharmacological treatment. Over 90% of patients require multifactorial treatments, with risk of adverse drug reactions (ADRs) and drug-drug interactions (DDIs) for the treatment of concomitant diseases such as hypertension (>25%), obesity (>70%), diabetes mellitus type 2 (>25%), hypercholesterolemia (40%), hypertriglyceridemia (20%), metabolic syndrome (20%), hepatobiliary disorder (15%), endocrine/metabolic disorders (>20%), cardiovascular disorder (40%), cerebrovascular disorder (60-90%), neuropsychiatric disorders (60-90%), and cancer (10%).For the past decades, pharmacological studies in search of potential treatments for AD focused on the following categories: neurotransmitter enhancers (11.38%), multitarget drugs (2.45%), anti-amyloid agents (13.30%), anti-tau agents (2.03%), natural products and derivatives (25.58%), novel synthetic drugs (8.13%), novel targets (5.66%), repository drugs (11.77%), anti-inflammatory drugs (1.20%), neuroprotective peptides (1.25%), stem cell therapy (1.85%), nanocarriers/nanotherapeutics (1.52%), and other compounds (<1%).Pharmacogenetic studies have shown that the therapeutic response to drugs in AD is genotype-specific in close association with the gene clusters that constitute the pharmacogenetic machinery (pathogenic, mechanistic, metabolic, transporter, pleiotropic genes) under the regulatory control of epigenetic mechanisms (DNA methylation, histone/chromatin remodeling, microRNA regulation). Most AD patients (>60%) are carriers of over ten pathogenic genes. The genes that most frequently (>50%) accumulate pathogenic variants in the same AD case are A2M (54.38%), ACE (78.94%), BIN1 (57.89%), CLU (63.15%), CPZ (63.15%), LHFPL6 (52.63%), MS4A4E (50.87%), MS4A6A (63.15%), PICALM (54.38%), PRNP (80.7059), and PSEN1 (77.19%). There is also an accumulation of 15 to 26 defective pharmagenes in approximately 85% of AD patients. About 50% of AD patients are carriers of at least 20 mutant pharmagenes, and over 80% are deficient metabolizers for the most common drugs, which are metabolized via the CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 enzymes.The implementation of pharmacogenetics can help optimize drug development and the limited therapeutic resources available to treat AD, and personalize the use of anti-dementia drugs in combination with other medications for the treatment of concomitant disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain.
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Olaia Martínez-Iglesias
- Department of Medical Epigenetics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Lola Corzo
- Department of Medical Biochemistry, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Natalia Cacabelos
- Department of Medical Documentation, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Rocío Pego
- Department of Neuropsychology, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| | - Juan C Carril
- Department of Genomics and Pharmacogenomics, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Corunna, Spain
| |
Collapse
|
9
|
Qu Q, Wang J, Li G, Chen R, Qu S. The Conformationally Sensitive Spatial Distance Between the TM3-4 Loop and Transmembrane Segment 7 in the Glutamate Transporter Revealed by Paired-Cysteine Mutagenesis. Front Cell Dev Biol 2021; 9:737629. [PMID: 34621751 PMCID: PMC8490817 DOI: 10.3389/fcell.2021.737629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
Excitatory amino acid transporters can maintain extracellular glutamate concentrations lower than neurotoxic levels by transferring neurotransmitters from the synaptic cleft into surrounding glial cells and neurons. Previous work regarding the structural studies of GltPh, GltTK, excitatory amino acid transporter 1 (EAAT1), EAAT3 and alanine serine cysteine transporter 2 described the transport mechanism of the glutamate transporter in depth. However, much remains unknown about the role of the loop between transmembrane segment 3 and 4 during transport. To probe the function of this loop in the transport cycle, we engineered a pair of cysteine residues between the TM3-TM4 loop and TM7 in cysteine-less EAAT2. Here, we show that the oxidative cross-linking reagent CuPh inhibits transport activity of the paired mutant L149C/M414C, whereas DTT inhibits the effect of CuPh on transport activity of L149C/M414C. Additionally, we show that the effect of cross-linking in the mutant is due to the formation of the disulfide bond within the molecules of EAAT2. Further, L-glutamate or KCl protect, and D,L-threo-β-benzyloxy-aspartate (TBOA) increases, CuPh-induced inhibition in the L149C/M414 mutant, suggesting that the L149C and M414C cysteines are closer or farther away in the outward- or inward-facing conformations, respectively. Together, our findings provide evidence that the distance between TM3-TM4 loop and TM7 alter when substrates are transported.
Collapse
Affiliation(s)
- Qi Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Ji Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Guiping Li
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rongqing Chen
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Akther S, Hirase H. Assessment of astrocytes as a mediator of memory and learning in rodents. Glia 2021; 70:1484-1505. [PMID: 34582594 DOI: 10.1002/glia.24099] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/26/2022]
Abstract
The classical view of astrocytes is that they provide supportive functions for neurons, transporting metabolites and maintaining the homeostasis of the extracellular milieu. This view is gradually changing with the advent of molecular genetics and optical methods allowing interrogation of selected cell types in live experimental animals. An emerging view that astrocytes additionally act as a mediator of synaptic plasticity and contribute to learning processes has gained in vitro and in vivo experimental support. Here we focus on the literature published in the past two decades to review the roles of astrocytes in brain plasticity in rodents, whereby the roles of neurotransmitters and neuromodulators are considered to be comparable to those in humans. We outline established inputs and outputs of astrocytes and discuss how manipulations of astrocytes have impacted the behavior in various learning paradigms. Multiple studies suggest that the contribution of astrocytes has a considerably longer time course than neuronal activation, indicating metabolic roles of astrocytes. We advocate that exploring upstream and downstream mechanisms of astrocytic activation will further provide insight into brain plasticity and memory/learning impairment.
Collapse
Affiliation(s)
- Sonam Akther
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hajime Hirase
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Ray S, Singhvi A. Charging Up the Periphery: Glial Ionic Regulation in Sensory Perception. Front Cell Dev Biol 2021; 9:687732. [PMID: 34458255 PMCID: PMC8385785 DOI: 10.3389/fcell.2021.687732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022] Open
Abstract
The peripheral nervous system (PNS) receives diverse sensory stimuli from the environment and transmits this information to the central nervous system (CNS) for subsequent processing. Thus, proper functions of cells in peripheral sense organs are a critical gate-keeper to generating appropriate animal sensory behaviors, and indeed their dysfunction tracks sensory deficits, sensorineural disorders, and aging. Like the CNS, the PNS comprises two major cell types, neurons (or sensory cells) and glia (or glia-like supporting neuroepithelial cells). One classic function of PNS glia is to modulate the ionic concentration around associated sensory cells. Here, we review current knowledge of how non-myelinating support cell glia of the PNS regulate the ionic milieu around sensory cell endings across species and systems. Molecular studies reviewed here suggest that, rather than being a passive homeostatic response, glial ionic regulation may in fact actively modulate sensory perception, implying that PNS glia may be active contributors to sensorineural information processing. This is reminiscent of emerging studies suggesting analogous roles for CNS glia in modulating neural circuit processing. We therefore suggest that deeper molecular mechanistic investigations into critical PNS glial functions like ionic regulation are essential to comprehensively understand sensorineural health, disease, and aging.
Collapse
Affiliation(s)
- Sneha Ray
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Wang J, Qu S. Conformationally Sensitive Proximity Between the TM3-4 Loop and Hairpin Loop 2 of the Glutamate Transporter EAAT2 Revealed by Paired-Cysteine Mutagenesis. ACS Chem Neurosci 2021; 12:163-175. [PMID: 33315395 DOI: 10.1021/acschemneuro.0c00645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) serve to maintain extracellular neurotransmitter concentrations below neurotoxic levels by transporting glutamate from the synaptic cleft into apposed glia and neurons. Although the crystal structures of the archaeal EAAT homologue from Pyrococcus horikoshii, GltPh, and the human glutamate transporter, EAAT1cryst, have been resolved, the transport mechanism of the transmembrane 3-4 (TM3-4) loop and its structural rearrangement during transport have remained poorly understood. In order to explore the spatial position and function of the TM3-4 loop in the transport cycle, we engineered a pair of cysteine residues between the TM3-4 loop and hairpin loop 2 (HP2) in cysteine-less EAAT2 (CL-EAAT2). We observed that the oxidative cross-linking reagent Cu(II)(1,10-phenanthroline)3 (CuPh) had a significant inhibitory effect on transport in the disubstituted A167C/G437C mutant, whereas dl-dithiothreitol (DTT) reversed the effect of cross-linking A167C/G437C on transport activity, as assayed by d-[3H]-aspartate uptake. Furthermore, we found that the effect of CuPh in this mutant was due to the formation of disulfide bonds in the transporter molecule. Moreover, dl-threo-β-benzyloxyaspartic acid (TBOA) attenuated, while l-glutamate or KCl enhanced, the CuPh-mediated inhibitory effect in the A167C/G437C mutant, suggesting that the A167C and G437C cysteines were farther apart in the outward-facing configuration and closer in the inward-facing configuration. Taken together, our findings provide evidence that the TM3-4 loop and HP2 change spatial proximity during the transport cycle.
Collapse
Affiliation(s)
- Ji Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shaogang Qu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
13
|
Hu XT. A Novel Concept is Needed for Combating Alzheimer's Disease and NeuroHIV. ACTA ACUST UNITED AC 2020; 4:85-91. [PMID: 32968718 PMCID: PMC7508468 DOI: 10.36959/734/377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Both Alzheimer’s disease (AD) and HIV-associated neurocognitive disorders (HAND) could progress to dementia, a severe consequence of neurodegenerative diseases. Cumulating evidence suggests that the β-amyloid (Aβ) theory, currently thought to be the predominant mechanism underlying AD and AD-related dementia (ADRD), needs re-evaluation, considering all treatments and new drug trials based upon this theory have been unsuccessful. Similar intention for treating HAND, including HIV-associated dementia (HAD), has also failed. Thus, novel theory, hypothesis, and therapeutic strategies are desperately needed for future study and effective treatments of AD/ADRD and HAND. There are numerous potential upstream mechanisms that may cause AD and/or HAND; but it is unrealistic to identify all of them. However, it is realistic and feasible to intervene the downstream mechanism of these two devastating neurodegenerative diseases by blocking the final common path to neurotoxicity mediated by overactivation of NMDA receptors (NMDARs) and voltage-gated calcium channels (VGCCs). Such a combined pharmacological intervention will likely ameliorate neuronal Ca2+ homeostasis by diminishing overactivated NMDAR and VGCC-mediated Ca2+ dysregulation (i.e., by reducing excessive Ca2+ influx and intracellular levels, [Ca2+]in)-induced hyperactivity, injury, and death of neurons in the critical brain regions that regulate neurocognition in the context of AD/ADRD or HAND, especially during aging. Here we present a novel theoretical concept, hypothesis, and working model for switching the battlefield from searching-and-fighting the original mechanism that may cause AD or HAND, to abolishing AD- and neuroHIV-induced neurotoxicity mediated by NMDAR and VGCC over activation, which may ultimately improve the therapeutic strategies for treating AD and HAND.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, USA
| |
Collapse
|
14
|
The Increased Densities, But Different Distributions, of Both C3 and S100A10 Immunopositive Astrocyte-Like Cells in Alzheimer's Disease Brains Suggest Possible Roles for Both A1 and A2 Astrocytes in the Disease Pathogenesis. Brain Sci 2020; 10:brainsci10080503. [PMID: 32751955 PMCID: PMC7463428 DOI: 10.3390/brainsci10080503] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022] Open
Abstract
There is increasing evidence of astrocyte dysfunction in the pathogenesis of Alzheimer’s disease (AD). Animal studies supported by human post-mortem work have demonstrated two main astrocyte types: the C3 immunopositive neurotoxic A1 astrocytes and the S100A10 immunopositive neuroprotective A2 astrocytes. A1 astrocytes predominate in AD, but the number of cases has been relatively small. We examined post-mortem brains from a larger cohort of AD cases and controls employing C3 and S100 immunohistochemistry to identify the astrocytic subtypes. There were a number of C3 immunopositive astrocyte-like cells (ASLCs) in the control cases, especially in the lower cerebral cortex and white matter. In AD this cell density appeared to be increased in the upper cerebral cortex but was similar to controls in other regions. The S100A10 showed minimal immunopositivity in the control cases in the cortex and white matter, but there was increased ASLC density in upper/lower cortex and white matter in AD compared to controls. In AD and control cases the numbers of C3 immunopositive ASLCs were greater than those for S100A10 ASLCs in all areas studied. It would appear that the relationship between A1 and A2 astrocytes and their possible role in the pathogenesis of AD is complex and requires more research.
Collapse
|
15
|
Transport rate of EAAT2 is regulated by amino acid located at the interface between the scaffolding and substrate transport domains. Neurochem Int 2020; 139:104792. [PMID: 32668264 DOI: 10.1016/j.neuint.2020.104792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/19/2020] [Accepted: 06/21/2020] [Indexed: 01/24/2023]
Abstract
Excitatory Amino Acid Transporters (EAATs) are plasma membrane proteins responsible for maintenance of low extracellular concentrations of glutamate in the CNS. Dysfunction in their activity is implicated in various neurological disorders. Glutamate transport by EAATs occurs through the movement of the central transport domain relative to the scaffold domain in the EAAT membrane protein. Previous studies suggested that residues located within the interface of these two domains in EAAT2, the main subtype of glutamate transporter in the brain, are involved in regulating transport rates. We used mutagenesis, structure-function relationship, surface protein expression and electrophysiology studies, in transfected COS-7 cells and oocytes, to examine residue glycine at position 298, which is located within this interface. Mutation G298A results in increased transport rate without changes in surface expression, suggesting a more hydrophobic and larger alanine results in facilitated transport movement. The increased transport rate does not involve changes in sodium affinity. Electrophysiological currents show that G298A increase both transport and anion currents, suggesting faster transitions through the transport cycle. This work identifies a region critically involved in setting the glutamate transport rate.
Collapse
|
16
|
Amyloid Fibril-Induced Astrocytic Glutamate Transporter Disruption Contributes to Complement C1q-Mediated Microglial Pruning of Glutamatergic Synapses. Mol Neurobiol 2020; 57:2290-2300. [PMID: 32008166 DOI: 10.1007/s12035-020-01885-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/21/2020] [Indexed: 01/23/2023]
Abstract
The complement C1q plays a critical role in microglial phagocytosis of glutamatergic synapses and in the pathogenesis of neuroinflammation in Alzheimer's disease (AD). We recently reported that upregulation of metabotropic glutamate receptor signaling is associated with increased synaptic C1q production and subsequent microglial phagocytosis of synapses in the rodent models of AD. Here, we explored the role of astrocytic glutamate transporter in the synaptic C1q production and microglial phagocytosis of hippocampal glutamatergic synapses in a rat model of AD. Activation of astrocyte and reduction glutamate transporter 1 (GLT1) were noted after bilateral microinjection of amyloid-beta (Aβ1-40) fibrils into the hippocampal CA1 area of rats. Ceftriaxone is a β-lactam antibiotic that upregulates GLT1 expression. Bilateral microinjection of ceftriaxone recovered GLT1 expression, decreased synaptic C1q production, suppressed microglial phagocytosis of glutamatergic synapses in the hippocampal CA1, and attenuated synaptic and cognitive deficits in rats microinjected with Aβ1-40. In contrast, artificial suppression of GLT1 activity by DL-threo-beta-benzyloxyaspartate (DL-TBOA) in naïve rats induced synaptic C1q expression and microglial phagocytosis of glutamatergic synapses in the hippocampal CA1 area, resulting in synaptic and cognitive dysfunction. These findings demonstrated that impairment of astrocytic glutamate transporter plays a role in the pathogenesis of AD.
Collapse
|
17
|
Tournier BB, Tsartsalis S, Rigaud D, Fossey C, Cailly T, Fabis F, Pham T, Grégoire MC, Kövari E, Moulin-Sallanon M, Savioz A, Millet P. TSPO and amyloid deposits in sub-regions of the hippocampus in the 3xTgAD mouse model of Alzheimer’s disease. Neurobiol Dis 2019; 121:95-105. [PMID: 30261283 DOI: 10.1016/j.nbd.2018.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/03/2018] [Accepted: 09/23/2018] [Indexed: 11/16/2022] Open
|
18
|
Vitamin D3 repressed astrocyte activation following lipopolysaccharide stimulation in vitro and in neonatal rats. Neuroreport 2018; 28:492-497. [PMID: 28430709 DOI: 10.1097/wnr.0000000000000782] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vitamin D3 has been reported to be an immunity modulator and high levels of vitamin D3 are correlated with a decreased risk for developing diseases in the central nervous system. Astrocytes are important immune cells and contribute toward inflammation during neurological diseases. The vitamin D receptor has been reported to be expressed in astrocytes; however, the effect of vitamin D3 on astrocyte activation has not been studied. Here, we found that lipopolysaccharide stimulation in astrocytes could enhance the expression of vitamin D receptor and Cyp27B1, which encodes the enzyme for converting vitamin D3 into its active form. Vitamin D3 suppressed the expression of proinflammatory cytokines tumour necrosis factor-α, interleukin-1β, vascular endothelial growth factor, and also TLR4 in activated astrocytes. Astrocyte activation was further found to be suppressed after the administration of vitamin D3 in neonatal rats injected with lipopolysaccharide in vivo. We demonstrated the antiactivation effect of vitamin D3 in astrocytes after lipopolysaccharide stimulation. Considering the function of reactive astrocytes in augmenting inflammatory response in neurodegeneration and brain injury, the finding that vitamin D3 administration may inhibit astrocyte activation may be potentially useful for the treatment of central nervous system disorders.
Collapse
|
19
|
Llorens F, Thüne K, Tahir W, Kanata E, Diaz-Lucena D, Xanthopoulos K, Kovatsi E, Pleschka C, Garcia-Esparcia P, Schmitz M, Ozbay D, Correia S, Correia Â, Milosevic I, Andréoletti O, Fernández-Borges N, Vorberg IM, Glatzel M, Sklaviadis T, Torres JM, Krasemann S, Sánchez-Valle R, Ferrer I, Zerr I. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol Neurodegener 2017; 12:83. [PMID: 29126445 PMCID: PMC5681777 DOI: 10.1186/s13024-017-0226-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/30/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND YKL-40 (also known as Chitinase 3-like 1) is a glycoprotein produced by inflammatory, cancer and stem cells. Its physiological role is not completely understood but YKL-40 is elevated in the brain and cerebrospinal fluid (CSF) in several neurological and neurodegenerative diseases associated with inflammatory processes. Yet the precise characterization of YKL-40 in dementia cases is missing. METHODS In the present study, we comparatively analysed YKL-40 levels in the brain and CSF samples from neurodegenerative dementias of different aetiologies characterized by the presence of cortical pathology and disease-specific neuroinflammatory signatures. RESULTS YKL-40 was normally expressed in fibrillar astrocytes in the white matter. Additionally YKL-40 was highly and widely expressed in reactive protoplasmic cortical and perivascular astrocytes, and fibrillar astrocytes in sporadic Creutzfeldt-Jakob disease (sCJD). Elevated YKL-40 levels were also detected in Alzheimer's disease (AD) but not in dementia with Lewy bodies (DLB). In AD, YKL-40-positive astrocytes were commonly found in clusters, often around β-amyloid plaques, and surrounding vessels with β-amyloid angiopathy; they were also distributed randomly in the cerebral cortex and white matter. YKL-40 overexpression appeared as a pre-clinical event as demonstrated in experimental models of prion diseases and AD pathology. CSF YKL-40 levels were measured in a cohort of 288 individuals, including neurological controls (NC) and patients diagnosed with different types of dementia. Compared to NC, increased YKL-40 levels were detected in sCJD (p < 0.001, AUC = 0.92) and AD (p < 0.001, AUC = 0.77) but not in vascular dementia (VaD) (p > 0.05, AUC = 0.71) or in DLB/Parkinson's disease dementia (PDD) (p > 0.05, AUC = 0.70). Further, two independent patient cohorts were used to validate the increased CSF YKL-40 levels in sCJD. Additionally, increased YKL-40 levels were found in genetic prion diseases associated with the PRNP-D178N (Fatal Familial Insomnia) and PRNP-E200K mutations. CONCLUSIONS Our results unequivocally demonstrate that in neurodegenerative dementias, YKL-40 is a disease-specific marker of neuroinflammation showing its highest levels in prion diseases. Therefore, YKL-40 quantification might have a potential for application in the evaluation of therapeutic intervention in dementias with a neuroinflammatory component.
Collapse
Affiliation(s)
- Franc Llorens
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Katrin Thüne
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Waqas Tahir
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Eirini Kanata
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniela Diaz-Lucena
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Present address: Unit of Lymphoid Malignancies, Division of Experimental Oncology, San Raffaele Scientific Institute, Milan, Italy
| | - Eleni Kovatsi
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Paula Garcia-Esparcia
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Matthias Schmitz
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Duru Ozbay
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Susana Correia
- Department of Neurology, University Medical School, Göttingen, Germany
| | - Ângela Correia
- Department of Neurology, University Medical School, Göttingen, Germany
| | | | - Olivier Andréoletti
- Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire, Toulouse, France
| | | | - Ina M. Vorberg
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Health Sciences, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isidro Ferrer
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Feixa Llarga s/n, 08907 L’Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain
| | - Inga Zerr
- Department of Neurology, University Medical School, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
20
|
Perez-Urrutia N, Mendoza C, Alvarez-Ricartes N, Oliveros-Matus P, Echeverria F, Grizzell JA, Barreto GE, Iarkov A, Echeverria V. Intranasal cotinine improves memory, and reduces depressive-like behavior, and GFAP + cells loss induced by restraint stress in mice. Exp Neurol 2017. [DOI: 10.1016/j.expneurol.2017.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|