1
|
Castellano M, Blanco V, Calzi ML, Costa B, Witwer K, Hill M, Cayota A, Segovia M, Tosar JP. Ribonuclease activity undermines immune sensing of naked extracellular RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590771. [PMID: 38712104 PMCID: PMC11071435 DOI: 10.1101/2024.04.23.590771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The plasma membrane and the membrane of endosomal vesicles are considered physical barriers preventing extracellular RNA uptake. While naked RNA can be spontaneously internalized by certain cells types, functional delivery of naked RNA into the cytosol has been rarely observed. Here we show that extracellular ribonucleases, mainly derived from cell culture supplements, have so far hindered the study of extracellular RNA functionality. In the presence of active ribonuclease inhibitors (RI), naked bacterial RNA is pro-inflammatory when spiked in the media of dendritic cells and macrophages. In murine cells, this response mainly depends on the action of endosomal Toll-like receptors. However, we also show that naked RNA can perform endosomal escape and engage with cytosolic RNA sensors and ribosomes. For example, naked mRNAs encoding reporter proteins can be spontaneously internalized and translated by a variety of cell types, in an RI-dependent manner. In vivo, RI co-injection enhances the activation induced by naked extracellular RNA on splenic lymphocytes and myeloid-derived leukocytes. Furthermore, naked extracellular RNA is inherently pro-inflammatory in ribonuclease-poor compartments such as the peritoneal cavity. Overall, these results demonstrate that naked RNA is bioactive and does not need encapsulation inside synthetic or biological lipid vesicles for functional uptake, making a case for nonvesicular extracellular RNA-mediated intercellular communication.
Collapse
Affiliation(s)
- Mauricio Castellano
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
- Immunoregulation and Inflammation Laboratory, Institut Pasteur Montevideo, Uruguay
| | - Valentina Blanco
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
| | - Marco Li Calzi
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
| | - Bruno Costa
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
- Analytical Biochemistry Unit, School of Science, Universidad de la República, Uruguay
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcelo Hill
- Immunoregulation and Inflammation Laboratory, Institut Pasteur Montevideo, Uruguay
- Academic Unit of Immunobiology, School of Medicine, Universidad de la República, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
- Hospital de Clínicas, Universidad de la República, Uruguay
| | - Mercedes Segovia
- Immunoregulation and Inflammation Laboratory, Institut Pasteur Montevideo, Uruguay
- Academic Unit of Immunobiology, School of Medicine, Universidad de la República, Uruguay
| | - Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
- Analytical Biochemistry Unit, School of Science, Universidad de la República, Uruguay
| |
Collapse
|
2
|
McCrudden CM, Bennie L, Chambers P, Wilson J, Kerr M, Ziminska M, Douglas H, Kuhn S, Carroll E, O'Brien G, Buckley N, Dunne NJ, McCarthy HO. Peptide delivery of a multivalent mRNA SARS-CoV-2 vaccine. J Control Release 2023; 362:536-547. [PMID: 37648082 DOI: 10.1016/j.jconrel.2023.08.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/06/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Lipid nanoparticles (LNP) have been instrumental in the success of mRNA vaccines and have opened up the field to a new wave of therapeutics. However, what is ahead beyond the LNP? The approach herein used a nanoparticle containing a blend of Spike, Membrane and Envelope antigens complexed for the first time with the RALA peptide (RALA-SME). The physicochemical characteristics and functionality of RALA-SME were assessed. With >99% encapsulation, RALA-SME was administered via intradermal injection in vivo, and all three antigen-specific IgG antibodies were highly significant. The IgG2a:IgG1 ratio were all >1.2, indicating a robust TH1 response, and this was further confirmed with the T-Cell response in mice. A complete safety panel of markers from mice were all within normal range, supported by safety data in hamsters. Vaccination of Syrian Golden hamsters with RALA-SME derivatives produced functional antibodies capable of neutralising SARS-CoV-2 from both Wuhan-Hu-1 and Omicron BA.1 lineages after two doses. Antibody levels increased over the study period and provided protection from disease-specific weight loss, with inhibition of viral migration down the respiratory tract. This peptide technology enables the flexibility to interchange and add antigens as required, which is essential for the next generation of adaptable mRNA vaccines.
Collapse
Affiliation(s)
- Cian M McCrudden
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Lindsey Bennie
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Philip Chambers
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Jordan Wilson
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Megan Kerr
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Monika Ziminska
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Hayley Douglas
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Sarah Kuhn
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Emma Carroll
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Garrett O'Brien
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK
| | - Niamh Buckley
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK; School of Chemical Sciences, Dublin City University, Collins Avenue, Dublin 9, Ireland; School of Mechanical & Manufacturing Engineering, Dublin City University, Collins Avenue, Dublin 9, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; pHion Therapeutics, Catalyst Concourse Building 2, 20 Queens Road, Belfast BT3 9DT, UK; School of Chemical Sciences, Dublin City University, Collins Avenue, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
3
|
Sarangdhar MA, Andina N, Allam R. Human molecular genetics sheds light on the physiological significance of ribonuclease inhibitor (RNH1). Eur J Hum Genet 2023:10.1038/s41431-023-01362-4. [PMID: 37085604 PMCID: PMC10400534 DOI: 10.1038/s41431-023-01362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023] Open
Affiliation(s)
- Mayuresh Anant Sarangdhar
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Nicola Andina
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ramanjaneyulu Allam
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Functions and cellular signaling by ribosomal extracellular RNA (rexRNA): Facts and hypotheses on a non-typical DAMP. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119408. [PMID: 36503009 DOI: 10.1016/j.bbamcr.2022.119408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Upon microbial infections with the subsequent host response of innate immunity, a variety of fragmented RNA- and DNA-based "Pathogen-associated molecular patterns" (PAMPs) are recognized mainly by endosomal or cytoplasmic host cell "Pattern recognition receptors" (PRRs), particularly "Toll-like receptors" (TLRs). Concomitantly, various self-extracellular RNA species (exRNAs) are present in extracellular body fluids where they contribute to diverse physiological and homeostatic processes. In principle, such exRNAs, including the most abundant one, ribosomal exRNA (rexRNA), are designated as "Danger-associated molecular patterns" (DAMPs) and are prevented by e.g. natural modifications from uncontrolled signaling via TLRs to avoid hyper-inflammatory responses or autoimmunity. Upon cellular stress or tissue damage/necrosis, the levels and composition of released self-exRNA species, either in free form, in complex with proteins or in association with extracellular vesicles (EVs), can change considerably. Among the self-exRNAs, rexRNA is considered as a non-typical DAMP, since it may induce inflammatory responses by cell membrane receptors, both in the absence or presence of PAMPs. Yet, its mode of receptor activation to mount inflammatory responses remains obscure. RexRNA also serves as a universal damaging factor in cardiovascular and other diseases independent of PRRs. In general, RNase1 provides a profound antagonist in these pathologies and in rexRNA-mediated inflammatory cell responses. Based on the extrapolation of the here described aspects of rexRNA-biology, further activities of this molecular entity are hypothesized that may stimulate additional research in this area.
Collapse
|
5
|
Prats-Ejarque G, Lorente H, Villalba C, Anguita R, Lu L, Vázquez-Monteagudo S, Fernández-Millán P, Boix E. Structure-Based Design of an RNase Chimera for Antimicrobial Therapy. Int J Mol Sci 2021; 23:95. [PMID: 35008522 PMCID: PMC8745102 DOI: 10.3390/ijms23010095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial resistance to antibiotics urges the development of alternative therapies. Based on the structure-function of antimicrobial members of the RNase A superfamily, we have developed a hybrid enzyme. Within this family, RNase 1 exhibits the highest catalytic activity and the lowest cytotoxicity; in contrast, RNase 3 shows the highest bactericidal action, alas with a reduced catalytic activity. Starting from both parental proteins, we designed a first RNase 3/1-v1 chimera. The construct had a catalytic activity much higher than RNase 3, unfortunately without reaching an equivalent antimicrobial activity. Thus, two new versions were created with improved antimicrobial properties. Both of these versions (RNase 3/1-v2 and -v3) incorporated an antimicrobial loop characteristic of RNase 3, while a flexible RNase 1-specific loop was removed in the latest construct. RNase 3/1-v3 acquired both higher antimicrobial and catalytic activities than previous versions, while retaining the structural determinants for interaction with the RNase inhibitor and displaying non-significant cytotoxicity. Following, we tested the constructs' ability to eradicate macrophage intracellular infection and observed an enhanced ability in both RNase 3/1-v2 and v3. Interestingly, the inhibition of intracellular infection correlates with the variants' capacity to induce autophagy. We propose RNase 3/1-v3 chimera as a promising lead for applied therapeutics.
Collapse
Affiliation(s)
- Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| | - Helena Lorente
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| | - Clara Villalba
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| | - Raúl Anguita
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| | - Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 625014, China
| | - Sergi Vázquez-Monteagudo
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| | - Pablo Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (H.L.); (C.V.); (R.A.); (L.L.); (S.V.-M.); (P.F.-M.)
| |
Collapse
|
6
|
Garnett ER, Raines RT. Emerging biological functions of ribonuclease 1 and angiogenin. Crit Rev Biochem Mol Biol 2021; 57:244-260. [PMID: 34886717 DOI: 10.1080/10409238.2021.2004577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic-type ribonucleases (ptRNases) are a large family of vertebrate-specific secretory endoribonucleases. These enzymes catalyze the degradation of many RNA substrates and thereby mediate a variety of biological functions. Though the homology of ptRNases has informed biochemical characterization and evolutionary analyses, the understanding of their biological roles is incomplete. Here, we review the functions of two ptRNases: RNase 1 and angiogenin. RNase 1, which is an abundant ptRNase with high catalytic activity, has newly discovered roles in inflammation and blood coagulation. Angiogenin, which promotes neovascularization, is now known to play roles in the progression of cancer and amyotrophic lateral sclerosis, as well as in the cellular stress response. Ongoing work is illuminating the biology of these and other ptRNases.
Collapse
Affiliation(s)
- Emily R Garnett
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
7
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
8
|
Human ribonuclease 1 serves as a secretory ligand of ephrin A4 receptor and induces breast tumor initiation. Nat Commun 2021; 12:2788. [PMID: 33986289 PMCID: PMC8119676 DOI: 10.1038/s41467-021-23075-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Human ribonuclease 1 (hRNase 1) is critical to extracellular RNA clearance and innate immunity to achieve homeostasis and host defense; however, whether it plays a role in cancer remains elusive. Here, we demonstrate that hRNase 1, independently of its ribonucleolytic activity, enriches the stem-like cell population and enhances the tumor-initiating ability of breast cancer cells. Specifically, secretory hRNase 1 binds to and activates the tyrosine kinase receptor ephrin A4 (EphA4) signaling to promote breast tumor initiation in an autocrine/paracrine manner, which is distinct from the classical EphA4-ephrin juxtacrine signaling through contact-dependent cell-cell communication. In addition, analysis of human breast tumor tissue microarrays reveals a positive correlation between hRNase 1, EphA4 activation, and stem cell marker CD133. Notably, high hRNase 1 level in plasma samples is positively associated with EphA4 activation in tumor tissues from breast cancer patients, highlighting the pathological relevance of the hRNase 1-EphA4 axis in breast cancer. The discovery of hRNase 1 as a secretory ligand of EphA4 that enhances breast cancer stemness suggests a potential treatment strategy by inactivating the hRNase 1-EphA4 axis.
Collapse
|
9
|
Chen J, Huang X, Geng R, Zhu D, Wang W, Liu H. Ribonuclease1 contributes to the antibacterial response and immune defense in blunt snout bream (Megalobrama amblycephala). Int J Biol Macromol 2021; 172:309-320. [PMID: 33454323 DOI: 10.1016/j.ijbiomac.2021.01.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/15/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
Ribonuclease 1 (RNase1) is a vertebrate-specific enzyme that mainly performs digestive activity in herbivorous mammals. Here we used bacterial viability assays to explore its antimicrobial activity in blunt snout bream (Megalobrama amblycephala). The results showed that Ma-RNase1 rapidly killed Gram-negative and Gram-positive bacteria at micromolar concentrations. Ma-RNase1 increased the permeability of bacterial outer and inner membranes, thus reducing the integrity of bacterial cell wall and membrane. Moreover, Ma-RNase1 effectively counteracted the tissue damage and apoptosis caused by Aeromonas hydrophila infection. Quantitative real-time PCR and immunoblot analysis indicated that RNase1 mRNA and protein were up-regulated in the kidney and gut during infection. Furthermore, A. hydrophila infection significantly induced Tnf-α and Il-1β mRNA expression in liver, but not in the RNase1 pre-treatment group. In addition, a significant increase in the expression of immune-related genes (Nf-κb and Tlr4) was found in liver, kidney and gut of A. hydrophila-infected fish, while a decrease in Myd88 and Tlr4 levels was found in liver, spleen, kidney and gut in the group pre-treated with RNase1. Collectively, these data suggest that Ma-RNase1 has antimicrobial function both in vitro and in vivo, and contributes to the protective effect and immune defense of blunt snout bream.
Collapse
Affiliation(s)
- Jing Chen
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Huang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruijing Geng
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongmei Zhu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Weimin Wang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| | - Han Liu
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Preissner KT, Fischer S, Deindl E. Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Front Cell Dev Biol 2020; 8:619221. [PMID: 33392206 PMCID: PMC7775424 DOI: 10.3389/fcell.2020.619221] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Upon vascular injury, tissue damage, ischemia, or microbial infection, intracellular material such as nucleic acids and histones is liberated and comes into contact with the vessel wall and circulating blood cells. Such "Danger-associated molecular patterns" (DAMPs) may thus have an enduring influence on the inflammatory defense process that involves leukocyte recruitment and wound healing reactions. While different species of extracellular RNA (exRNA), including microRNAs and long non-coding RNAs, have been implicated to influence inflammatory processes at different levels, recent in vitro and in vivo work has demonstrated a major impact of ribosomal exRNA as a prominent DAMP on various steps of leukocyte recruitment within the innate immune response. This includes the induction of vascular hyper-permeability and vasogenic edema by exRNA via the activation of the "vascular endothelial growth factor" (VEGF) receptor-2 system, as well as the recruitment of leukocytes to the inflamed endothelium, the M1-type polarization of inflammatory macrophages, or the role of exRNA as a pro-thrombotic cofactor to promote thrombosis. Beyond sterile inflammation, exRNA also augments the docking of bacteria to host cells and the subsequent microbial invasion. Moreover, upon vessel occlusion and ischemia, the shear stress-induced release of exRNA initiates arteriogenesis (i.e., formation of natural vessel bypasses) in a multistep process that resembles leukocyte recruitment. Although exRNA can be counteracted for by natural circulating RNase1, under the conditions mentioned, only the administration of exogenous, thermostable, non-toxic RNase1 provides an effective and safe therapeutic regimen for treating the damaging activities of exRNA. It remains to be investigated whether exRNA may also influence viral infections (including COVID-19), e.g., by supporting the interaction of host cells with viral particles and their subsequent invasion. In fact, as a consequence of the viral infection cycle, massive amounts of exRNA are liberated, which can provoke further tissue damage and enhance virus dissemination. Whether the application of RNase1 in this scenario may help to limit the extent of viral infections like COVID-19 and impact on leukocyte recruitment and emigration steps in immune defense in order to limit the extent of associated cardiovascular diseases remains to be studied.
Collapse
Affiliation(s)
- Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus Liebig University Giessen, Giessen, Germany
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Sayers J, Wralstad EC, Raines RT. Semisynthesis of Human Ribonuclease-S. Bioconjug Chem 2020; 32:82-87. [PMID: 33296182 DOI: 10.1021/acs.bioconjchem.0c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since its conception, the ribonuclease S complex (RNase S) has led to historic discoveries in protein chemistry, enzymology, and related fields. Derived by the proteolytic cleavage of a single peptide bond in bovine pancreatic ribonuclease (RNase A), RNase S serves as a convenient and reliable model system for incorporating unlimited functionality into an enzyme. Applications of the RNase S system in biomedicine and biotechnology have, however, been hindered by two shortcomings: (1) the bovine-derived enzyme could elicit an immune response in humans, and (2) the complex is susceptible to dissociation. Here, we have addressed both limitations in the first semisynthesis of an RNase S conjugate derived from human pancreatic ribonuclease and stabilized by a covalent interfragment cross-link. We anticipate that this strategy will enable unprecedented applications of the "RNase-S" system.
Collapse
Affiliation(s)
- Jessica Sayers
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Evans C Wralstad
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Eller CH, Raines RT. Antimicrobial Synergy of a Ribonuclease and a Peptide Secreted by Human Cells. ACS Infect Dis 2020; 6:3083-3088. [PMID: 33054163 DOI: 10.1021/acsinfecdis.0c00594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
LL-37 is a secretory peptide that has antimicrobial activity. Ribonuclease 1 (RNase 1) is a secretory enzyme that is not cytotoxic. We find that human LL-37 and human RNase 1 can act synergistically to kill Gram-negative bacterial cells. In the presence of nontoxic concentrations of LL-37, RNase 1 is toxic to Escherichia coli cells at picomolar levels. Using wild-type RNase 1 and an inactive variant labeled with a fluorophore, we observe the adherence of RNase 1 to E. coli cells and its cellular entry in the presence of LL-37. These data suggest a natural means of modulating the human microbiome via the cooperation of an endogenous peptide (37 residues) and small enzyme (128 residues).
Collapse
Affiliation(s)
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Bedenbender K, Schmeck BT. Endothelial Ribonuclease 1 in Cardiovascular and Systemic Inflammation. Front Cell Dev Biol 2020; 8:576491. [PMID: 33015070 PMCID: PMC7500176 DOI: 10.3389/fcell.2020.576491] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
The vascular endothelial cell layer forms the inner lining of all blood vessels to maintain proper functioning of the vascular system. However, dysfunction of the endothelium depicts a major issue in context of vascular pathologies, such as atherosclerosis or thrombosis that cause several million deaths per year worldwide. In recent years, the endothelial extracellular endonuclease Ribonuclease 1 (RNase1) was described as a key player in regulation of vascular homeostasis by protecting endothelial cells from detrimental effects of the damage-associated molecular pattern extracellular RNA upon acute inflammation. Despite this protective function, massive dysregulation of RNase1 was observed during prolonged endothelial cell inflammation resulting in progression of several vascular diseases. For the first time, this review article outlines the current knowledge on endothelial RNase1 and its role in function and dysfunction of the endothelium, thereby focusing on the intensive research from recent years: Uncovering the underlying mechanisms of RNase1 function and regulation in response to acute as well as long-term inflammation, the role of RNase1 in context of vascular, inflammatory and infectious diseases and the potential to develop novel therapeutic options to treat these pathologies against the background of RNase1 function in endothelial cells.
Collapse
Affiliation(s)
- Katrin Bedenbender
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Marburg, Germany
| | - Bernd T. Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Marburg, Germany
- Department of Pulmonary and Critical Care Medicine, Department of Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Marburg, Germany
- Member of the German Center for Lung Research, Member of the German Center for Infectious Disease Research, Marburg, Germany
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
14
|
Nechooshtan G, Yunusov D, Chang K, Gingeras TR. Processing by RNase 1 forms tRNA halves and distinct Y RNA fragments in the extracellular environment. Nucleic Acids Res 2020; 48:8035-8049. [PMID: 32609822 PMCID: PMC7430647 DOI: 10.1093/nar/gkaa526] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/07/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular RNAs participate in intercellular communication, and are being studied as promising minimally invasive diagnostic markers. Several studies in recent years showed that tRNA halves and distinct Y RNA fragments are abundant in the extracellular space, including in biofluids. While their regulatory and diagnostic potential has gained a substantial amount of attention, the biogenesis of these extracellular RNA fragments remains largely unexplored. Here, we demonstrate that these fragments are produced by RNase 1, a highly active secreted nuclease. We use RNA sequencing to investigate the effect of a null mutation of RNase 1 on the levels of tRNA halves and Y RNA fragments in the extracellular environment of cultured human cells. We complement and extend our RNA sequencing results with northern blots, showing that tRNAs and Y RNAs in the non-vesicular extracellular compartment are released from cells as full-length precursors and are subsequently cleaved to distinct fragments. In support of these results, formation of tRNA halves is recapitulated by recombinant human RNase 1 in our in vitro assay. These findings assign a novel function for RNase 1, and position it as a strong candidate for generation of tRNA halves and Y RNA fragments in biofluids.
Collapse
Affiliation(s)
- Gal Nechooshtan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Dinar Yunusov
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
15
|
Gotte G, Menegazzi M. Biological Activities of Secretory RNases: Focus on Their Oligomerization to Design Antitumor Drugs. Front Immunol 2019; 10:2626. [PMID: 31849926 PMCID: PMC6901985 DOI: 10.3389/fimmu.2019.02626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022] Open
Abstract
Ribonucleases (RNases) are a large number of enzymes gathered into different bacterial or eukaryotic superfamilies. Bovine pancreatic RNase A, bovine seminal BS-RNase, human pancreatic RNase 1, angiogenin (RNase 5), and amphibian onconase belong to the pancreatic type superfamily, while binase and barnase are in the bacterial RNase N1/T1 family. In physiological conditions, most RNases secreted in the extracellular space counteract the undesired effects of extracellular RNAs and become protective against infections. Instead, if they enter the cell, RNases can digest intracellular RNAs, becoming cytotoxic and having advantageous effects against malignant cells. Their biological activities have been investigated either in vitro, toward a number of different cancer cell lines, or in some cases in vivo to test their potential therapeutic use. However, immunogenicity or other undesired effects have sometimes been associated with their action. Nevertheless, the use of RNases in therapy remains an appealing strategy against some still incurable tumors, such as mesothelioma, melanoma, or pancreatic cancer. The RNase inhibitor (RI) present inside almost all cells is the most efficacious sentry to counteract the ribonucleolytic action against intracellular RNAs because it forms a tight, irreversible and enzymatically inactive complex with many monomeric RNases. Therefore, dimerization or multimerization could represent a useful strategy for RNases to exert a remarkable cytotoxic activity by evading the interaction with RI by steric hindrance. Indeed, the majority of the mentioned RNases can hetero-dimerize with antibody derivatives, or even homo-dimerize or multimerize, spontaneously or artificially. This can occur through weak interactions or upon introducing covalent bonds. Immuno-RNases, in particular, are fusion proteins representing promising drugs by combining high target specificity with easy delivery in tumors. The results concerning the biological features of many RNases reported in the literature are described and discussed in this review. Furthermore, the activities displayed by some RNases forming oligomeric complexes, the mechanisms driving toward these supramolecular structures, and the biological rebounds connected are analyzed. These aspects are offered with the perspective to suggest possible efficacious therapeutic applications for RNases oligomeric derivatives that could contemporarily lack, or strongly reduce, immunogenicity and other undesired side-effects.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marta Menegazzi
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
16
|
Prats-Ejarque G, Lu L, Salazar VA, Moussaoui M, Boix E. Evolutionary Trends in RNA Base Selectivity Within the RNase A Superfamily. Front Pharmacol 2019; 10:1170. [PMID: 31649540 PMCID: PMC6794472 DOI: 10.3389/fphar.2019.01170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/12/2019] [Indexed: 11/13/2022] Open
Abstract
There is a growing interest in the pharmaceutical industry to design novel tailored drugs for RNA targeting. The vertebrate-specific RNase A superfamily is nowadays one of the best characterized family of enzymes and comprises proteins involved in host defense with specific cytotoxic and immune-modulatory properties. We observe within the family a structural variability at the substrate-binding site associated to a diversification of biological properties. In this work, we have analyzed the enzyme specificity at the secondary base binding site. Towards this end, we have performed a kinetic characterization of the canonical RNase types together with a molecular dynamic simulation of selected representative family members. The RNases' catalytic activity and binding interactions have been compared using UpA, UpG and UpI dinucleotides. Our results highlight an evolutionary trend from lower to higher order vertebrates towards an enhanced discrimination power of selectivity for adenine respect to guanine at the secondary base binding site (B2). Interestingly, the shift from guanine to adenine preference is achieved in all the studied family members by equivalent residues through distinct interaction modes. We can identify specific polar and charged side chains that selectively interact with donor or acceptor purine groups. Overall, we observe selective bidentate polar and electrostatic interactions: Asn to N1/N6 and N6/N7 adenine groups in mammals versus Glu/Asp and Arg to N1/N2, N1/O6 and O6/N7 guanine groups in non-mammals. In addition, kinetic and molecular dynamics comparative results on UpG versus UpI emphasize the main contribution of Glu/Asp interactions to N1/N2 group for guanine selectivity in lower order vertebrates. A close inspection at the B2 binding pocket also highlights the principal contribution of the protein ß6 and L4 loop regions. Significant differences in the orientation and extension of the L4 loop could explain how the same residues can participate in alternative binding modes. The analysis suggests that within the RNase A superfamily an evolution pressure has taken place at the B2 secondary binding site to provide novel substrate-recognition patterns. We are confident that a better knowledge of the enzymes' nucleotide recognition pattern would contribute to identify their physiological substrate and eventually design applied therapies to modulate their biological functions.
Collapse
Affiliation(s)
- Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vivian A Salazar
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Garnett ER, Lomax JE, Mohammed BM, Gailani D, Sheehan JP, Raines RT. Phenotype of ribonuclease 1 deficiency in mice. RNA (NEW YORK, N.Y.) 2019; 25:921-934. [PMID: 31053653 PMCID: PMC6633200 DOI: 10.1261/rna.070433.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/27/2019] [Indexed: 05/06/2023]
Abstract
Biological roles for extracellular RNA (eRNA) have become apparent. For example, eRNA can induce contact activation in blood via activation of the plasma proteases factor XII (FXII) and factor XI (FXI). We sought to reveal the biological role of the secretory enzyme ribonuclease 1 (RNase 1) in an organismal context by generating and analyzing RNase 1 knockout (Rnase1-/-) mice. We found that these mice are viable, healthy, and fertile, though larger than Rnase1+/+ mice. Rnase1-/- plasma contains more RNA than does the plasma of Rnase1+/+ mice. Moreover, the plasma of Rnase1-/- mice clots more rapidly than does wild-type plasma. This phenotype appeared to be due to increased levels of the active form of FXII (FXIIa) in the plasma of Rnase1-/- mice compared to Rnase1+/+ mice, and is consistent with the known effects of eRNA on FXII activation. The apparent activity of FXI in the plasma of Rnase1-/- mice was 1000-fold higher when measured in an assay triggered by a low concentration of tissue factor than in assays based on recalcification, consistent with eRNA enhancing FXI activation by thrombin. These findings suggest that one of the physiological functions of RNase 1 is to degrade eRNA in blood plasma. Loss of this function facilitates FXII and FXI activation, which could have effects on inflammation and blood coagulation. We anticipate that Rnase1-/- mice will be a useful tool for evaluating other hypotheses about the functions of RNase 1 and of eRNA in vivo.
Collapse
Affiliation(s)
- Emily R Garnett
- Graduate Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jo E Lomax
- Graduate Program Molecular and Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Bassem M Mohammed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - John P Sheehan
- Department of Medicine/Hematology-Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
18
|
Oroz J, Laurents DV. RNA binding proteins: Diversity from microsurgeons to cowboys. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194398. [PMID: 31271896 DOI: 10.1016/j.bbagrm.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/21/2023]
Abstract
The conformation and mechanism of proteins that degrade and bind RNA, which has provided key insights into post-transcriptional gene regulation, is explored here. During the twentieth century's last decades, the characterization of ribonucleases and RNA binding domains revealed the diversity of their reaction mechanisms and modes of RNA recognition, and the bases of protein folding, substrate specificity and binding affinity. More recent research showed how these domains combine through oligomerization or genetic recombination to create larger proteins with highly specific and readily programmable ribonucleolytic activity. In the last 15 years, the study of the capacity of proteins, usually disordered, to pool RNAs into discrete, non-aqueous microdroplets to facilitate their transport, modification and degradation - analogous to cowboys herding cattle - has advanced our comprehension of gene expression. Finally, the current uses of RNA binding proteins and the future applications of protein/RNA microdroplets are highlighted.
Collapse
Affiliation(s)
- Javier Oroz
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain
| | - Douglas V Laurents
- "Rocasolano" Institute of Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain.
| |
Collapse
|
19
|
Lee HH, Wang YN, Hung MC. Functional roles of the human ribonuclease A superfamily in RNA metabolism and membrane receptor biology. Mol Aspects Med 2019; 70:106-116. [PMID: 30902663 DOI: 10.1016/j.mam.2019.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/17/2019] [Indexed: 02/08/2023]
Abstract
The human ribonuclease A (hRNase A) superfamily is comprised of 13 members of secretory RNases, most of which are recognized as catabolic enzymes for their ribonucleolytic activity to degrade ribonucleic acids (RNAs) in the extracellular space, where they play a role in innate host defense and physiological homeostasis. Interestingly, human RNases 9-13, which belong to a non-canonical subgroup of the hRNase A superfamily, are ribonucleolytic activity-deficient proteins with unclear biological functions. Moreover, accumulating evidence indicates that secretory RNases, such as human RNase 5, can be internalized into cells facilitated by membrane receptors like the epidermal growth factor receptor to regulate intracellular RNA species, in particular non-coding RNAs, and signaling pathways by either a ribonucleolytic activity-dependent or -independent manner. In this review, we summarize the classical role of hRNase A superfamily in the metabolism of extracellular and intracellular RNAs and update its non-classical function as a cognate ligand of membrane receptors. We further discuss the biological significance and translational potential of using secretory RNases as predictive biomarkers or therapeutic agents in certain human diseases and the pathological settings for future investigations.
Collapse
Affiliation(s)
- Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Unit 108, 1515 Holcombe Boulevard, Houston, TX, 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, China Medical University, Taichung, 404, Taiwan; Department of Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
20
|
Ressler VT, Raines RT. Consequences of the Endogenous N-Glycosylation of Human Ribonuclease 1. Biochemistry 2019; 58:987-996. [PMID: 30633504 DOI: 10.1021/acs.biochem.8b01246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonuclease 1 (RNase 1) is the most prevalent human homologue of the archetypal enzyme RNase A. RNase 1 contains sequons for N-linked glycosylation at Asn34, Asn76, and Asn88 and is N-glycosylated at all three sites in vivo. The effect of N-glycosylation on the structure and function of RNase 1 is unknown. By using an engineered strain of the yeast Pichia pastoris, we installed a heptasaccharide (Man5GlcNAc2) on the side chain of Asn34, Asn76, and Asn88 to produce the authentic triglycosylated form of human RNase 1. As a glutamine residue is not a substrate for cellular oligosaccharyltransferase, we used strategic asparagine-to-glutamine substitutions to produce the three diglycosylated and three monoglycosylated forms of RNase 1. We found that the N-glycosylation of RNase 1 at any position attenuates its catalytic activity but enhances both its thermostability and its resistance to proteolysis. N-Glycosylation at Asn34 generates the most active and stable glycoforms, in accord with its sequon being highly conserved among vertebrate species. These data provide new insight on the biological role of the N-glycosylation of a human secretory enzyme.
Collapse
Affiliation(s)
- Valerie T Ressler
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Ronald T Raines
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
21
|
Hoang TT, Tanrikulu IC, Vatland QA, Hoang TM, Raines RT. A Human Ribonuclease Variant and ERK-Pathway Inhibitors Exhibit Highly Synergistic Toxicity for Cancer Cells. Mol Cancer Ther 2018; 17:2622-2632. [PMID: 30282811 DOI: 10.1158/1535-7163.mct-18-0724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/15/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic-type ribonucleases (ptRNases) are prevalent secretory enzymes that catalyze the cleavage of RNA. Ribonuclease inhibitor (RI) is a cytosolic protein that has femtomolar affinity for ptRNases, affording protection from the toxic catalytic activity of ptRNases, which can invade human cells. A human ptRNase variant that is resistant to inhibition by RI is a cytotoxin that is undergoing a clinical trial as a cancer chemotherapeutic agent. We find that the ptRNase and protein kinases in the ERK pathway exhibit strongly synergistic toxicity toward lung cancer cells (including a KRASG12C variant) and melanoma cells (including BRAFV600E variants). The synergism arises from inhibiting the phosphorylation of RI and thereby diminishing its affinity for the ptRNase. These findings link seemingly unrelated cellular processes, and suggest that the use of a kinase inhibitor to unleash a cytotoxic enzyme could lead to beneficial manifestations in the clinic.
Collapse
Affiliation(s)
- Trish T Hoang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - I Caglar Tanrikulu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Quinn A Vatland
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Trieu M Hoang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin. .,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
22
|
Lu L, Li J, Moussaoui M, Boix E. Immune Modulation by Human Secreted RNases at the Extracellular Space. Front Immunol 2018; 9:1012. [PMID: 29867984 PMCID: PMC5964141 DOI: 10.3389/fimmu.2018.01012] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/23/2022] Open
Abstract
The ribonuclease A superfamily is a vertebrate-specific family of proteins that encompasses eight functional members in humans. The proteins are secreted by diverse innate immune cells, from blood cells to epithelial cells and their levels in our body fluids correlate with infection and inflammation processes. Recent studies ascribe a prominent role to secretory RNases in the extracellular space. Extracellular RNases endowed with immuno-modulatory and antimicrobial properties can participate in a wide variety of host defense tasks, from performing cellular housekeeping to maintaining body fluid sterility. Their expression and secretion are induced in response to a variety of injury stimuli. The secreted proteins can target damaged cells and facilitate their removal from the focus of infection or inflammation. Following tissue damage, RNases can participate in clearing RNA from cellular debris or work as signaling molecules to regulate the host response and contribute to tissue remodeling and repair. We provide here an overall perspective on the current knowledge of human RNases’ biological properties and their role in health and disease. The review also includes a brief description of other vertebrate family members and unrelated extracellular RNases that share common mechanisms of action. A better knowledge of RNase mechanism of actions and an understanding of their physiological roles should facilitate the development of novel therapeutics.
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mohammed Moussaoui
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|