1
|
Al-Qahtani Z, Al-Kuraishy HM, Ali NH, Elewa YHA, Batiha GES. Kynurenine pathway in type 2 diabetes: Role of metformin. Drug Dev Res 2024; 85:e22243. [PMID: 39129450 DOI: 10.1002/ddr.22243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/08/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
The Kynurenine pathway (KP) which is involved in the synthesis of nicotinamide adenine dinucleotide (NAD) from tryptophan (Trp) is intricate in the development of insulin resistance (IR) and type 2 diabetes (T2D). Inflammatory reactions in response to cardiometabolic disorders can induce the development of IR through the augmentation of KP. However, kynurenine (KYN), a precursor of kynurenic acid (KA) is increased following physical exercise and involved in the reduction of IR. Consequently, KP metabolites KA and KYN have anti-diabetogenic effects while other metabolites have diabetogenic effects. KP modulators, either inhibitors or activators, affect glucose homeostasis and insulin sensitivity in T2D in a bidirectional way, either protective or detrimental, that is not related to the KP effect. However, metformin through inhibition of inflammatory signaling pathways can reduce the activation of KP in T2D. These findings indicated a strong controversy regarding the role of KP in T2D. Therefore, the objectives of this mini review were to clarify how KP induces the development of IR and T2D. In addition, this review aimed to find the mechanistic role of antidiabetic drug metformin on the KP, and how KP modulators affect the pathogenesis of T2D.
Collapse
Affiliation(s)
- Zainah Al-Qahtani
- Internal Medicine Department, Neurology Section, College of Medicine, King Khaled university, Abha, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Naif H Ali
- Department of internal medicine, Medical College, Najran University, Najran, Saudi Arabia
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, Egypt
| |
Collapse
|
2
|
Gonçalves M, Rodrigues-Santos P, Januário C, Cosentino M, Pereira FC. Indoleamine 2,3-dioxygenase (IDO1) - Can dendritic cells and monocytes expressing this moonlight enzyme change the phase of Parkinson's Disease? Int Immunopharmacol 2024; 133:112062. [PMID: 38652967 DOI: 10.1016/j.intimp.2024.112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.
Collapse
Affiliation(s)
- Milene Gonçalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Institute of Immunology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Cristina Januário
- Univ Coimbra, CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Marco Cosentino
- Univ Insubria, Center for Research in Medical Pharmacology, Varese, Italy
| | - Frederico C Pereira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
3
|
Chaudhry KA, Bianchi-Smiraglia A. The aryl hydrocarbon receptor as a tumor modulator: mechanisms to therapy. Front Oncol 2024; 14:1375905. [PMID: 38807762 PMCID: PMC11130384 DOI: 10.3389/fonc.2024.1375905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is widely recognized to play important, but complex, modulatory roles in a variety of tumor types. In this review, we comprehensively summarize the increasingly controversial role of AhR as a tumor regulator and the mechanisms by which it alters tumor progression based on the cancer cell type. Finally, we discuss new and emerging strategies to therapeutically modulate AhR, focusing on novel agents that hold promise in current human clinical trials as well as existing FDA-approved drugs that could potentially be repurposed for cancer therapy.
Collapse
Affiliation(s)
| | - Anna Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, NY, United States
| |
Collapse
|
4
|
Fares J, Petrosyan E, Kanojia D, Dmello C, Cordero A, Duffy JT, Yeeravalli R, Sahani MH, Zhang P, Rashidi A, Arrieta VA, Ulasov I, Ahmed AU, Miska J, Balyasnikova IV, James CD, Sonabend AM, Heimberger AB, Lesniak MS. Metixene is an incomplete autophagy inducer in preclinical models of metastatic cancer and brain metastases. J Clin Invest 2023; 133:e161142. [PMID: 37847564 PMCID: PMC10721147 DOI: 10.1172/jci161142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
A paucity of chemotherapeutic options for metastatic brain cancer limits patient survival and portends poor clinical outcomes. Using a CNS small-molecule inhibitor library of 320 agents known to be blood-brain barrier permeable and approved by the FDA, we interrogated breast cancer brain metastasis vulnerabilities to identify an effective agent. Metixene, an antiparkinsonian drug, was identified as a top therapeutic agent that was capable of decreasing cellular viability and inducing cell death across different metastatic breast cancer subtypes. This agent significantly reduced mammary tumor size in orthotopic xenograft assays and improved survival in an intracardiac model of multiorgan site metastases. Metixene further extended survival in mice bearing intracranial xenografts and in an intracarotid mouse model of multiple brain metastases. Functional analysis revealed that metixene induced incomplete autophagy through N-Myc downstream regulated 1 (NDRG1) phosphorylation, thereby leading to caspase-mediated apoptosis in both primary and brain-metastatic cells, regardless of cancer subtype or origin. CRISPR/Cas9 KO of NDRG1 led to autophagy completion and reversal of the metixene apoptotic effect. Metixene is a promising therapeutic agent against metastatic brain cancer, with minimal reported side effects in humans, which merits consideration for clinical translation.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edgar Petrosyan
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Crismita Dmello
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alex Cordero
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Joseph T. Duffy
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ragini Yeeravalli
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mayurbhai H. Sahani
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Peng Zhang
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aida Rashidi
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Victor A. Arrieta
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ilya Ulasov
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Atique U. Ahmed
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jason Miska
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Irina V. Balyasnikova
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C. David James
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, and
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
5
|
Pacheco JHL, Elizondo G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment. Biochem Pharmacol 2023; 217:115804. [PMID: 37716620 DOI: 10.1016/j.bcp.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated. Among them is the aryl hydrocarbon receptor (AHR) signaling pathway. AHR, a ligand-activated transcription factor associated with the metabolism of polycyclic aromatic hydrocarbons and estrogens, is overexpressed in breast cancer. Furthermore, AHR and estrogen receptor (ER) cross-talk pathways have been observed. Additionally, the Tryptophan (Trp) catabolizing enzymes indolamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are overexpressed in breast cancer. IDO/TDO catalyzes the formation of Kynurenine (KYN) and other tryptophan-derived metabolites, which are ligands of AHR. Once KYN activates AHR, it stimulates the expression of the IDO enzyme, increases the level of KYN, and activates non-canonical pathways to control inflammation and immunosuppression in breast tumors. The interplay between E2, AHR, and IDO/TDO/KYN pathways and their impact on the immune system represents an immunosuppressive axis on breast cancer. The potential modulation of the immunosuppressive E2-AHR-IDO/TDO/KYN axis has aroused great expectations in oncotherapy. The present article will review the mechanisms implicated in generating the immunosuppressive axis E2-AHR-IDO/TDO/KYN in breast cancer and the current state of knowledge as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
6
|
Yucel MA, Ozcelik I, Algul O. Machine learning study: from the toxicity studies to tetrahydrocannabinol effects on Parkinson's disease. Future Med Chem 2023; 15:365-377. [PMID: 36942739 DOI: 10.4155/fmc-2022-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Aim: Investigating molecules having toxicity and chemical similarity to find hit molecules. Methods: The machine learning (ML) model was developed to predict the arylhydrocarbon receptor (AHR) activity of anti-Parkinson's and US FDA-approved drugs. The ML algorithm was a support vector machine, and the dataset was Tox21. Results: The ML model predicted apomorphine in anti-Parkinson's drugs and 73 molecules in FDA-approved drugs as active. The authors were curious if there is any molecule like apomorphine in these 73 molecules. A fingerprint similarity analysis of these molecules was conducted and found tetrahydrocannabinol (THC). Molecular docking studies of THC for dopamine receptor 1 (affinity = -8.2 kcal/mol) were performed. Conclusion: THC may affect dopamine receptors directly and could be useful for Parkinson's disease.
Collapse
Affiliation(s)
- Mehmet Ali Yucel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, 33169, Turkey
| | - Ibrahim Ozcelik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
| | - Oztekin Algul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, 24100, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, 33169, Turkey
| |
Collapse
|
7
|
Chen Z, Xia X, Chen H, Huang H, An X, Sun M, Yao Q, Kim K, Zhang H, Chu M, Chen R, Bhutia YD, Ganapathy V, Kou L. Carbidopa suppresses estrogen receptor-positive breast cancer via AhR-mediated proteasomal degradation of ERα. Invest New Drugs 2022; 40:1216-1230. [PMID: 36070108 DOI: 10.1007/s10637-022-01289-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
Estrogen receptor-α (ERα) promotes breast cancer, and ER-positive cancer accounts for ~ 80% of breast cancers. This subtype responds positively to hormone/endocrine therapies involving either inhibition of estrogen synthesis or blockade of estrogen action. Carbidopa, a drug used to potentiate the therapeutic efficacy of L-DOPA in Parkinson's disease, is an agonist for aryl hydrocarbon receptor (AhR). Pharmacotherapy in Parkinson's disease decreases the risk for cancers, including breast cancer. The effects of carbidopa on ER-positive breast cancer were evaluated in cell culture and in mouse xenografts. The assays included cell proliferation, apoptosis, cell migration/invasion, subcellular localization of AhR, proteasomal degradation, and tumor growth in xenografts. Carbidopa decreased proliferation and migration of ER-positive human breast cancer cells in vitro with no significant effect on ER-negative breast cancer cells. Treatment of ER-positive cells with carbidopa promoted nuclear localization of AhR and expression of AhR target genes; it also decreased cellular levels of ERα via proteasomal degradation in an AhR-dependent manner. In vivo, carbidopa suppressed the growth of ER-positive breast cancer cells in mouse xenografts; this was associated with increased apoptosis and decreased cell proliferation. Carbidopa has therapeutic potential for ER-positive breast cancer either as a single agent or in combination with other standard chemotherapies.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Korea
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xing Xia
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Heyan Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Xingsi An
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Meng Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
- Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Maoping Chu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China.
- Pediatric Research Institute, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China.
| | - Yangzom D Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Vadivel Ganapathy
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, 325027, Zhejiang, China.
| |
Collapse
|
8
|
Carbidopa, an activator of aryl hydrocarbon receptor, suppresses IDO1 expression in pancreatic cancer and decreases tumor growth. Biochem J 2022; 479:1807-1824. [PMID: 35997090 PMCID: PMC9472820 DOI: 10.1042/bcj20210851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/28/2022]
Abstract
IDO1 is an immunomodulatory enzyme responsible for tryptophan catabolism. Its expression in immune cells, especially the DCs, has attracted attention because it leads to tryptophan depletion at the immunological synapse, thereby causing T-cell anergy and immune evasion by the tumor cells. Cancer cells also overexpress IDO1. Immunotherapy targeting IDO1 has been one of the focus areas in cancer biology, but lately studies have identified non-immune related functions of IDO1 leading to a paradigm shift with regard to IDO1 function in the context of tumor cells. In this study, we show that PDAC tissues and PDAC cells overexpress IDO1. The expression level is reciprocally related to overall patient survival. We further show that carbidopa, an FDA-approved drug for Parkinson's disease as well as an AhR agonist, inhibits IDO1 expression in PDAC cells. Using athymic nude mice, we demonstrate that carbidopa-mediated suppression of IDO1 expression attenuates tumor growth. Mechanistically, we show that AhR is responsible for carbidopa-mediated suppression of IDO1, directly as a transcription factor and indirectly by interfering with the JAK/STAT pathway. Overall, targeting IDO1 not only in immune cells but also in cancer cells could be a beneficial therapeutic strategy for PDAC and potentially for other cancers as well and that carbidopa could be repurposed to treat cancers that overexpress IDO1.
Collapse
|
9
|
Abd El-Fattah EE. IDO/kynurenine pathway in cancer: possible therapeutic approaches. Lab Invest 2022; 20:347. [PMID: 35918736 PMCID: PMC9344609 DOI: 10.1186/s12967-022-03554-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022]
Abstract
Cancer is one of the leading causes of death in both men and women worldwide. One of the main changes associated with cancer progression, metastasis, recurrence, and chemoresistance is the change in the tumor immune microenvironment, especially immunosuppression. Cancer immunosuppression appears in multiple forms, such as inhibition of immuno-stimulant cells with downregulation of immuno-stimulant mediators or through stimulation of immuno-suppressive cells with upregulation of immunosuppressive mediators. One of the most immunosuppressive mediators that approved potency in lung cancer progression is indoleamine 2,3-dioxygenase (IDO) and its metabolite kynurenine (Kyn). The current review tries to elucidate the role of IDO/Kyn on cancer proliferation, apoptosis, angiogenesis, oxidative stress, and cancer stemness. Besides, our review investigates the new therapeutic modalities that target IDO/Kyn pathway and thus as drug candidates for targeting lung cancer and drugs that potentiate IDO/Kyn pathway and thus can be cancer-promoting agents.
Collapse
Affiliation(s)
- Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| |
Collapse
|
10
|
Grishanova AY, Perepechaeva ML. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int J Mol Sci 2022; 23:6719. [PMID: 35743162 PMCID: PMC9224361 DOI: 10.3390/ijms23126719] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has long been implicated in the induction of a battery of genes involved in the metabolism of xenobiotics and endogenous compounds. AhR is a ligand-activated transcription factor necessary for the launch of transcriptional responses important in health and disease. In past decades, evidence has accumulated that AhR is associated with the cellular response to oxidative stress, and this property of AhR must be taken into account during investigations into a mechanism of action of xenobiotics that is able to activate AhR or that is susceptible to metabolic activation by enzymes encoded by the genes that are under the control of AhR. In this review, we examine various mechanisms by which AhR takes part in the oxidative-stress response, including antioxidant and prooxidant enzymes and cytochrome P450. We also show that AhR, as a participant in the redox balance and as a modulator of redox signals, is being increasingly studied as a target for a new class of therapeutic compounds and as an explanation for the pathogenesis of some disorders.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Federal Research Center of Fundamental and Translational Medicine, Institute of Molecular Biology and Biophysics, Timakova Str. 2, 630117 Novosibirsk, Russia;
| |
Collapse
|
11
|
Ogura J, Sato T, Higuchi K, Sivaprakasam S, Kopel J, Bhutia YD, Ganapathy V. Binding of Citrate-Fe 3+ to Plastic Culture Dishes, an Artefact Useful as a Simple Technique to Screen for New Iron Chelators. Int J Mol Sci 2022; 23:ijms23126657. [PMID: 35743100 PMCID: PMC9223814 DOI: 10.3390/ijms23126657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
NaCT mediates citrate uptake in the liver cell line HepG2. When these cells were exposed to iron (Fe3+), citrate uptake/binding as monitored by the association of [14C]-citrate with cells increased. However, there was no change in NaCT expression and function, indicating that NaCT was not responsible for this Fe3+-induced citrate uptake/binding. Interestingly however, the process exhibited substrate selectivity and saturability as if the process was mediated by a transporter. Notwithstanding these features, subsequent studies demonstrated that the iron-induced citrate uptake/binding did not involve citrate entry into cells; instead, the increase was due to the formation of citrate-Fe3+ chelate that adsorbed to the cell surface. Surprisingly, the same phenomenon was observed in culture wells without HepG2 cells, indicating the adsorption of the citrate-Fe3+ chelate to the plastic surface of culture wells. We used this interesting phenomenon as a simple screening technique for new iron chelators with the logic that if another iron chelator is present in the assay system, it would compete with citrate for binding to Fe3+ and prevent the formation and adsorption of citrate-Fe3+ to the culture well. This technique was validated with the known iron chelators deferiprone and deferoxamine, and with the bacterial siderophore 2,3-dihydroxybenzoic acid and the catechol carbidopa.
Collapse
Affiliation(s)
- Jiro Ogura
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.O.); (T.S.); (K.H.); (S.S.); (J.K.); (Y.D.B.)
- Graduate School of Pharmaceutical Sciences, Yamagata University, Yamagata 990-8560, Japan
| | - Toshihiro Sato
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.O.); (T.S.); (K.H.); (S.S.); (J.K.); (Y.D.B.)
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Kei Higuchi
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.O.); (T.S.); (K.H.); (S.S.); (J.K.); (Y.D.B.)
- Department of Pharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.O.); (T.S.); (K.H.); (S.S.); (J.K.); (Y.D.B.)
| | - Jonathan Kopel
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.O.); (T.S.); (K.H.); (S.S.); (J.K.); (Y.D.B.)
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.O.); (T.S.); (K.H.); (S.S.); (J.K.); (Y.D.B.)
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.O.); (T.S.); (K.H.); (S.S.); (J.K.); (Y.D.B.)
- Correspondence: ; Tel.: +1-(806)-743-2518
| |
Collapse
|
12
|
Dopamine is an aryl hydrocarbon receptor agonist. Biochem J 2021; 477:3899-3910. [PMID: 32905582 DOI: 10.1042/bcj20200440] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/27/2022]
Abstract
Tryptophan metabolites exhibit aryl hydrocarbon receptor (AhR) agonist activity and recent studies show that the phenylalanine metabolites serotonin and carbidopa, a drug used in treating Parkinson's disease, activated the AhR. In this study, we identified the neuroactive hormone dopamine as an inducer of drug-metabolizing enzymes CYP1A1, CYP1B1, and UGT1A1 in colon and glioblastoma cells and similar results were observed for carbidopa. In contrast, carbidopa but not dopamine exhibited AhR activity in BxPC3 pancreatic cancer cells whereas minimal activity was observed for both compounds in Panc1 pancreatic cancer cells. In contrast with a previous report, the induction responses and cytotoxicity of carbidopa was observed only at high concentrations (100 µM) in BxPC3 cells. Our results show that similar to serotonin and several tryptophan metabolites, dopamine is also an AhR-active compound.
Collapse
|
13
|
Chen Z, Cai A, Zheng H, Huang H, Sun R, Cui X, Ye W, Yao Q, Chen R, Kou L. Carbidopa suppresses prostate cancer via aryl hydrocarbon receptor-mediated ubiquitination and degradation of androgen receptor. Oncogenesis 2020; 9:49. [PMID: 32404918 PMCID: PMC7220950 DOI: 10.1038/s41389-020-0236-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/23/2022] Open
Abstract
Carbidopa, a peripheral decarboxylase inhibitor used with L-DOPA to treat Parkinson’s disease, has attracted significant interest in recent years for its anticancer effect. Increasing evidence reveals that Carbidopa can inhibit cancer cell growth and induce apoptosis through aryl hydrocarbon receptor (AHR) in some cancers. However, the antitumor effect of Carbidopa in prostate cancer (PCa) is not fully understood. Androgen receptor (AR) plays a central role in PCa, even in advanced “castrate-resistant” disease. In the present study, we report that Carbidopa suppresses the growth of PCa by downregulating the protein expression of AR. Carbidopa inhibits proliferation and migration of LNCaP cells and promotes apoptosis, but has no effect on the AR-independent prostate cell line DU145. Carbidopa increases ubiquitination of AR in LNCaP cells. Several studies have shown that AHR can act as an E3 ubiquitin ligase and promote the proteasomal degradation of AR. Quantitative RT-PCR, immunofluorescence staining and immunoblotting assay demonstrate that AHR is induced and activated by Carbidopa, and the co-immunoprecipitation assay shows that AR interacts with AHR, firmly confirming that Carbidopa decreases AR protein level though AHR-induced proteasomal degradation. In addition, Carbidopa suppresses PCa growth in vivo when xenografted into immunocompromised mice. Carbidopa treatment increases AHR protein level and decreases AR protein level in tumor tissues. Taken together, our study implicates Carbidopa for the first time in effective suppression of prostate cancer via a mechanism, involving AHR-mediated proteasomal degradation of AR.
Collapse
Affiliation(s)
- Zhiwei Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China
| | - Aimin Cai
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hailun Zheng
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Rui Sun
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiao Cui
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Weijian Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China. .,Department of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China. .,Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China.
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China. .,Wenzhou Municipal Key Laboratory of Paediatric Pharmacy, Wenzhou, 325027, China.
| |
Collapse
|
14
|
Piwarski SA, Thompson C, Chaudhry AR, Denvir J, Primerano DA, Fan J, Salisbury TB. The putative endogenous AHR ligand ITE reduces JAG1 and associated NOTCH1 signaling in triple negative breast cancer cells. Biochem Pharmacol 2020; 174:113845. [PMID: 32032581 DOI: 10.1016/j.bcp.2020.113845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor. Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. TNBC expresses AHR and AHR ligands have anti-cancer activity in TNBC. The aggressiveness of TNBC is due in part to JAG1-NOTCH1 signaling. ITE is a putative endogenous AHR ligand. We show that ITE reduces the expression of JAG1 the amount of Notch 1 intracellular domain (NICD1) and the phosphorylation of STAT3 (at tyrosine 705) in TNBC MDA-MB-231 cells. The STAT3 inhibitor STATTIC also reduced JAG1. STAT3, thus, mediates regulation of JAG1 in MDA-MB-231 cells. Reducing the expression of JAG1 with short interfering RNA decreases the growth, migration and invasiveness of MDA-MB-231 cells. JAG1, therefore, has cellular effects in MDA-MB-231 cells under basal conditions. We consequently evaluated if exposing cells to greater amounts of JAG1 would counteract ITE cellular effects in MDA-MB-231 cells. The results show that JAG1 does not counteract the cellular effects of ITE. JAG1, thus, has no effect on growth or invasiveness in MDA-MB-231 cells treated with ITE. JAG1, therefore, has context dependent roles in MDA-MB-231 cells (basal versus ITE treatment). The results also show that other pathways, not inhibition of the JAG1-NOTCH1 pathway, are important for mediating the growth and invasive inhibitory effect of ITE on MDA-MB-231 cells.
Collapse
Affiliation(s)
- Sean A Piwarski
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Chelsea Thompson
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Ateeq R Chaudhry
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - James Denvir
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Donald A Primerano
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Jun Fan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
15
|
Ristic B, Sikder MOF, Bhutia YD, Ganapathy V. Pharmacologic inducers of the uric acid exporter ABCG2 as potential drugs for treatment of gouty arthritis. Asian J Pharm Sci 2019; 15:173-180. [PMID: 32373197 PMCID: PMC7193448 DOI: 10.1016/j.ajps.2019.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/12/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Uric acid is the end product of purine catabolism and its plasma levels are maintained below its maximum solubility in water (6–7 mg/dl). The plasma levels are tightly regulated as the balance between the rate of production and the rate of excretion, the latter occurring in urine (kidney), bile (liver) and feces (intestinal tract). Reabsorption in kidney is also an important component of this process. Both excretion and reabsorption are mediated by specific transporters. Disruption of the balance between production and excretion leads to hyperuricemia, which increases the risk of uric acid crystallization as monosodium urate with subsequent deposition of the crystals in joints causing gouty arthritis. Loss-of-function mutations in the transporters that mediate uric acid excretion are associated with gout. The ATP-Binding Cassette exporter ABCG2 is important in uric acid excretion at all three sites: kidney (urine), liver (bile), and intestine (feces). Mutations in this transporter cause gout and these mutations occur at significant prevalence in general population. However, mutations that are most prevalent result only in partial loss of transport function. Therefore, if the expression of these partially defective transporters could be induced, the increased number of the transporter molecules would compensate for the mutation-associated decrease in transport function and hence increase uric acid excretion. As such, pharmacologic agents with ability to induce the expression of ABCG2 represent potentially a novel class of drugs for treatment of gouty arthritis.
Collapse
Affiliation(s)
| | | | | | - Vadivel Ganapathy
- Corresponding author. Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States. Tel.: +1 806 743 2518.
| |
Collapse
|
16
|
Dolciami D, Ballarotto M, Gargaro M, López-Cara LC, Fallarino F, Macchiarulo A. Targeting Aryl hydrocarbon receptor for next-generation immunotherapies: Selective modulators (SAhRMs) versus rapidly metabolized ligands (RMAhRLs). Eur J Med Chem 2019; 185:111842. [PMID: 31727470 DOI: 10.1016/j.ejmech.2019.111842] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Aryl Hydrocarbon Receptor (AhR) constitutes a major network hub of genomic and non-genomic signaling pathways, connecting host's immune cells to environmental factors. It shapes innate and adaptive immune processes to environmental stimuli with species-, cell- and tissue-type dependent specificity. Although an ever increasing number of studies has thrust AhR into the limelight as attractive target for the development of next-generation immunotherapies, concerns exist on potential safety issues associated with small molecule modulation of the receptor. Selective AhR modulators (SAhRMs) and rapidly metabolized AhR ligands (RMAhRLs) are two classes of receptor agonists that are emerging as interesting lead compounds to bypass AhR-related toxicity in favor of therapeutic effects. In this article, we discuss SAhRMs and RMAhRLs reported in literature, covering concepts underlying their definitions, specific binding modes, structure-activity relationships and AhR-mediated functions.
Collapse
Affiliation(s)
- Daniela Dolciami
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Ballarotto
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Luisa Carlota López-Cara
- Department of Pharmaceutical & Organic Chemistry, Faculty of Pharmacy, University of Granada, 18010, Granada, Spain
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy.
| |
Collapse
|
17
|
Eizuka K, Nakashima D, Oka N, Wagai S, Takahara T, Saito T, Koike K, Kasamatsu A, Shiiba M, Tanzawa H, Uzawa K. SYT12 plays a critical role in oral cancer and may be a novel therapeutic target. J Cancer 2019; 10:4913-4920. [PMID: 31598163 PMCID: PMC6775516 DOI: 10.7150/jca.32582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Synaptotagmin12 (SYT12) has been well characterized as the regulator of transmitter release in the nervous system, however the relevance and molecular mechanisms of SYT12 in oral squamous cell carcinoma (OSCC) are not understood. In the current study, we investigated the expression of SYT12 and its molecular biological functions in OSCC by quantitative reverse transcriptase polymerase chain reaction, immunoblot analysis, and immunohistochemistry. SYT12 were up-regulated significantly in OSCC-derived cell lines and primary OSCC tissue compared with the normal counterparts (P<0.05) and the SYT12 expression levels were correlated significantly with clinical indicators, such as the primary tumoral size, lymph node metastasis, and TNM stage (P<0.05). SYT12 knockdown OSCC cells showed depressed cellular proliferation, migration, and invasion with cell cycle arrest at G1 phase. Surprisingly, we found increased calcium/calmodulin-dependent protein kinase 2 (CAMK2) inhibitor 1 (CAMK2N1) and decreased CAMK2-phosphorylation in the knockdown cells. Furthermore, treatment with L-3, 4-dihydroxyphenylalanine (L-dopa), a drug approved for Parkinson's disease, led to down-regulation of SYT12 and similar phenotypes to SYT12 knockdown cells. Taken together, we concluded that SYT12 plays a significant role in OSCC progression via CAMK2N1 and CAMK2, and that L-dopa would be a new drug for OSCC treatment through the SYT12 expression.
Collapse
Affiliation(s)
- Keitaro Eizuka
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Noritoshi Oka
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sho Wagai
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshikazu Takahara
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Tomoaki Saito
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Kazuyuki Koike
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
18
|
Carbidopa Alters Tryptophan Metabolism in Breast Cancer and Melanoma Cells Leading to the Formation of Indole-3-Acetonitrile, a Pro-Proliferative Metabolite. Biomolecules 2019; 9:biom9090409. [PMID: 31450593 PMCID: PMC6770008 DOI: 10.3390/biom9090409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 01/02/2023] Open
Abstract
Carbidopa is used for the treatment of Parkinson’s disease (PD) as an inhibitor of DOPA decarboxylase, and PD patients taking carbidopa have a lower incidence of various tumors, except for breast cancer and melanoma. Recently, it was shown that carbidopa inhibits tryptophan-2,3-dioxygenase (TDO) and kynureninase enzymes. In the present study, the effect of carbidopa on the viability and metabolic profile of breast cancer MCF-7 and melanoma A375 cells was investigated. Carbidopa was not effective in inhibiting MCF-7 and A375 proliferation. Liquid chromatography and mass spectrometry revealed a new compound, identified as indole-3-acetonitrile (IAN), which promoted a concentration-dependent increase in the viability of both cell lines. The results suggest that treatment with carbidopa may alter tryptophan (Trp) metabolism in breast cancer and melanoma leading to the formation of a pro-proliferative Trp metabolite, which may contribute to its failure in reducing breast cancers and melanoma incidence in PD patients taking carbidopa.
Collapse
|
19
|
Muku GE, Murray IA, Perdew GH. Activation of the Ah Receptor Modulates Gastrointestinal Homeostasis and the Intestinal Microbiome. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40495-019-00197-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Sarma SN, Nagano R, Ohsako S. Tyroxine Hydroxylase-Positive Neuronal Cell Population is Increased by Temporal Dioxin Exposure at Early Stage of Differentiation from Human Embryonic Stem Cells. Int J Mol Sci 2019; 20:ijms20112687. [PMID: 31159217 PMCID: PMC6600215 DOI: 10.3390/ijms20112687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The neurological effects of short-term dioxin exposure during the fetal period is an important health risk in humans. Here, we investigated the effects of dioxin on neural differentiation using human embryonic stem cells (hESCs) to evaluate human susceptibility to dioxin. Methods: Using an enzymatic bulk passage, neural differentiation from human ESCs was carried out. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was added to various stages of culture. The expression levels of the neuronal markers microtubule-associated protein 2 (MAP2) and thyroxine hydroxylase (TH) were measured by RT-qPCR and image analysis of immunostaining. Results: Although early-stage neuronal cells are quite resistant to TCDD, the numbers of neural rosettes and increases in mRNA expression levels and the number of cells positive for MAP2 and TH were significant by temporal exposure at embryoid body stage (Day9-exposure group). In contrast, the TCDD exposures against ESCs (Day0-exposure group) and differentiated neural cells (Day35-exposure group) were not affected at all. The increment was similarly observed by continuous exposure of TCDD from Day9 through Day60. Conclusions: These results indicated that dioxin exposure during the early stage of differentiation from hESCs increases the contents of neuronal cells, especially TH-positive neuronal cells. Regulations of aryl hydrocarbon receptor (AHR) signaling in an early stage of embryogenesis should be investigated extensively to understand the mechanism underlying the increase in neuronal cell populations and to apply the knowledge to regenerative medicine.
Collapse
Affiliation(s)
- Sailendra Nath Sarma
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Reiko Nagano
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
21
|
van Kessel SP, El Aidy S. Bacterial Metabolites Mirror Altered Gut Microbiota Composition in Patients with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2019; 9:S359-S370. [PMID: 31609701 PMCID: PMC6839483 DOI: 10.3233/jpd-191780] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 09/18/2019] [Indexed: 12/11/2022]
Abstract
Increasing evidence is supporting the hypothesis of α-synuclein pathology spreading from the gut to the brain although the exact etiology of Parkinson's disease (PD) is unknown. Furthermore, it has been proposed that inflammation, via the gastrointestinal tract, potentially through infections, may contribute to α-synuclein pathogenesis, and thus to the risk of developing PD. Recently, many studies have shown that PD patients have an altered microbiota composition compared to healthy controls. Inflammation in the gut might drive microbiota alterations or vice versa. Many studies focused on the detection of biomarkers of the etiology, onset, or progression of PD however also report metabolites from bacterial origin. These metabolites might reflect the bacterial composition and as well play an important role in immune homeostasis, ultimately affecting the progression of PD. Besides the bacterial metabolites, pharmacological treatment of PD might play a crucial role during the progression and thus treatment of the disease on the immune system. This review aims to establish a link between the microbial composition with the observed alterations of bacterial metabolites and their impact on the immune system, which could have influential effect in onset, progression and etiology of PD.
Collapse
Affiliation(s)
- Sebastiaan P. van Kessel
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Sahar El Aidy
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Carbidopa: a selective Ah receptor modulator (SAhRM). Biochem J 2017; 474:3763-3765. [PMID: 29109131 DOI: 10.1042/bcj20170728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/23/2023]
Abstract
The aryl hydrocarbon receptor (AhR) was discovered as the intracellular receptor that bound with high affinity to the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and the AhR is required for mediating the toxicity induced by TCDD. Subsequent studies show that the AhR binds structurally diverse chemicals including plant-derived compounds that promote health and several AhR-active pharmaceuticals that exhibit anticancer activity. In this issue, there is a report that carbidopa, a drug used for treating Parkinson's disease, is also an AhR ligand, and this compound inhibits pancreatic cancer cell and tumor growth. These results are consistent with activities of other AhR-active compounds that inhibit carcinogenesis. Like carbidopa, these chemicals are selective AhR modulators with potential clinical applications that are AhR-dependent.
Collapse
|