1
|
R4 RGS proteins suppress engraftment of human hematopoietic stem/progenitor cells by modulating SDF-1/CXCR4 signaling. Blood Adv 2021; 5:4380-4392. [PMID: 34500454 PMCID: PMC8579266 DOI: 10.1182/bloodadvances.2020003307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
Specific R4 RGS members are expressed in human HSPCs and regulated by the SDF-1/CXCR4 axis. RGS1/13/16 suppress HSPC engraftment, SDF-1 signaling, and key effectors of stem cell trafficking/maintenance.
Homing and engraftment of hematopoietic stem/progenitor cells (HSPCs) into the bone marrow (BM) microenvironment are tightly regulated by the chemokine stromal cell–derived factor-1 (SDF-1) and its G-protein–coupled receptor C-X-C motif chemokine receptor 4 (CXCR4), which on engagement with G-protein subunits, trigger downstream migratory signals. Regulators of G-protein signaling (RGS) are GTPase-accelerating protein of the Gα subunit and R4 subfamily members have been implicated in SDF-1–directed trafficking of mature hematopoietic cells, yet their expression and influence on HSPCs remain mostly unknown. Here, we demonstrated that human CD34+ cells expressed multiple R4 RGS genes, of which RGS1, RGS2, RGS13, and RGS16 were significantly upregulated by SDF-1 in a CXCR4-dependent fashion. Forced overexpression of RGS1, RGS13, or RGS16 in CD34+ cells not only inhibited SDF-1–directed migration, calcium mobilization, and phosphorylation of AKT, ERK, and STAT3 in vitro, but also markedly reduced BM engraftment in transplanted NOD/SCID mice. Genome-wide microarray analysis of RGS-overexpressing CD34+ cells detected downregulation of multiple effectors with established roles in stem cell trafficking/maintenance. Convincingly, gain-of-function of selected effectors or ex vivo priming with their ligands significantly enhanced HSPC engraftment. We also constructed an evidence-based network illustrating the overlapping mechanisms of RGS1, RGS13, and RGS16 downstream of SDF-1/CXCR4 and Gαi. This model shows that these RGS members mediate compromised kinase signaling and negative regulation of stem cell functions, complement activation, proteolysis, and cell migration. Collectively, this study uncovers an essential inhibitory role of specific R4 RGS proteins in stem cell engraftment, which could potentially be exploited to develop improved clinical HSPC transplantation protocols.
Collapse
|
2
|
Asli A, Higazy-Mreih S, Avital-Shacham M, Kosloff M. Residue-level determinants of RGS R4 subfamily GAP activity and specificity towards the G i subfamily. Cell Mol Life Sci 2021; 78:6305-6318. [PMID: 34292354 PMCID: PMC11072900 DOI: 10.1007/s00018-021-03898-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 01/01/2023]
Abstract
The structural basis for the GTPase-accelerating activity of regulators of G protein signaling (RGS) proteins, as well as the mechanistic basis for their specificity in interacting with the heterotrimeric (αβγ) G proteins they inactivate, is not sufficiently understood at the family level. Here, we used biochemical assays to compare RGS domains across the RGS family and map those individual residues that favorably contribute to GTPase-accelerating activity, and those residues responsible for attenuating RGS domain interactions with Gα subunits. We show that conserved interactions of RGS residues with both the Gα switch I and II regions are crucial for RGS activity, while the reciprocal effects of "modulatory" and "disruptor" residues selectively modulate RGS activity. Our results quantify how specific interactions between RGS domains and Gα subunits are set by a balance between favorable RGS residue interactions with particular Gα switch regions, and unfavorable interactions with the Gα helical domain.
Collapse
Affiliation(s)
- Ali Asli
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Sabreen Higazy-Mreih
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Meirav Avital-Shacham
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
3
|
Shushan A, Kosloff M. Structural design principles for specific ultra-high affinity interactions between colicins/pyocins and immunity proteins. Sci Rep 2021; 11:3789. [PMID: 33589691 PMCID: PMC7884437 DOI: 10.1038/s41598-021-83265-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
The interactions of the antibiotic proteins colicins/pyocins with immunity proteins is a seminal model system for studying protein–protein interactions and specificity. Yet, a precise and quantitative determination of which structural elements and residues determine their binding affinity and specificity is still lacking. Here, we used comparative structure-based energy calculations to map residues that substantially contribute to interactions across native and engineered complexes of colicins/pyocins and immunity proteins. We show that the immunity protein α1–α2 motif is a unique structurally-dissimilar element that restricts interaction specificity towards all colicins/pyocins, in both engineered and native complexes. This motif combines with a diverse and extensive array of electrostatic/polar interactions that enable the exquisite specificity that characterizes these interactions while achieving ultra-high affinity. Surprisingly, the divergence of these contributing colicin residues is reciprocal to residue conservation in immunity proteins. The structurally-dissimilar immunity protein α1–α2 motif is recognized by divergent colicins similarly, while the conserved immunity protein α3 helix interacts with diverse colicin residues. Electrostatics thus plays a key role in setting interaction specificity across all colicins and immunity proteins. Our analysis and resulting residue-level maps illuminate the molecular basis for these protein–protein interactions, with implications for drug development and rational engineering of these interfaces.
Collapse
Affiliation(s)
- Avital Shushan
- The Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838, Haifa, Israel.
| |
Collapse
|
4
|
Chen R, Ferris MJ, Wang S. Dopamine D2 autoreceptor interactome: Targeting the receptor complex as a strategy for treatment of substance use disorder. Pharmacol Ther 2020; 213:107583. [PMID: 32473160 PMCID: PMC7434700 DOI: 10.1016/j.pharmthera.2020.107583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Dopamine D2 autoreceptors (D2ARs), located in somatodendritic and axon terminal compartments of dopamine (DA) neurons, function to provide a negative feedback regulatory control on DA neuron firing, DA synthesis, reuptake and release. Dysregulation of D2AR-mediated DA signaling is implicated in vulnerability to substance use disorder (SUD). Due to the extreme low abundance of D2ARs compared to postsynaptic D2 receptors (D2PRs) and the lack of experimental tools to differentiate the signaling of D2ARs from D2PRs, the regulation of D2ARs by drugs of abuse is poorly understood. The recent availability of conditional D2AR knockout mice and newly developed virus-mediated gene delivery approaches have provided means to specifically study the function of D2ARs at the molecular, cellular and behavioral levels. There is a growing revelation of novel mechanisms and new proteins that mediate D2AR activity, suggesting that D2ARs act cooperatively with an array of membrane and intracellular proteins to tightly control DA transmission. This review highlights D2AR-interacting partners including transporters, G-protein-coupled receptors, ion channels, intracellular signaling modulators, and protein kinases. The complexity of the D2AR interaction network illustrates the functional divergence of D2ARs. Pharmacological targeting of multiple D2AR-interacting partners may be more effective to restore disrupted DA homeostasis by drugs of abuse.
Collapse
Affiliation(s)
- Rong Chen
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America.
| | - Mark J Ferris
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America; Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| | - Shiyu Wang
- Dept. of Physiology & Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, United States of America
| |
Collapse
|
5
|
Karoussiotis C, Marti-Solano M, Stepniewski TM, Symeonof A, Selent J, Georgoussi Z. A highly conserved δ-opioid receptor region determines RGS4 interaction. FEBS J 2019; 287:736-748. [PMID: 31386272 DOI: 10.1111/febs.15033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 05/21/2019] [Accepted: 08/02/2019] [Indexed: 12/28/2022]
Abstract
The δ-opioid receptor (δ-OR) couples to Gi/Go proteins to modulate a variety of responses in the nervous system. Τhe regulator of G protein signalling 4 (RGS4) was previously shown to directly interact within the C-terminal region of δ-OR using its N-terminal domain to negatively modulate opioid receptor signalling. Herein, using molecular dynamics simulations and in vitro pull-down experiments we delimit this interaction to 12 helix 8 residues of δ-ΟR and to the first 17 N-terminal residues (NT) of RGS4. Monitoring the complex arrangement and stabilization between RGS4 and δ-OR by molecular dynamics simulations combined with mutagenesis studies, we defined that two critical interactions are formed: one between Phe329 of helix8 of δ-ΟR and Pro9 of the NT of RGS4 and the other a salt bridge between Glu323 of δ-ΟR and Lys17 of RGS4. Our observations allow drafting for the first time a structural model of a ternary complex including the δ-opioid receptor, a G protein and a RGS protein. Furthermore, the high degree of conservation among opioid receptors of the RGS4-binding region, points to a conserved interaction mode between opioid receptors and this important regulatory protein.
Collapse
Affiliation(s)
- Christos Karoussiotis
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Maria Marti-Solano
- Research Programme on Biomedical Informatics (GRIB) - Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute, Pompeu Fabra University, Barcelona, Spain
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB) - Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute, Pompeu Fabra University, Barcelona, Spain.,Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Poland
| | - Alexandra Symeonof
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB) - Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute, Pompeu Fabra University, Barcelona, Spain
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signalling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
6
|
Israeli R, Asli A, Avital-Shacham M, Kosloff M. RGS6 and RGS7 Discriminate between the Highly Similar Gα i and Gα o Proteins Using a Two-Tiered Specificity Strategy. J Mol Biol 2019; 431:3302-3311. [PMID: 31153905 DOI: 10.1016/j.jmb.2019.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/12/2019] [Accepted: 05/23/2019] [Indexed: 11/15/2022]
Abstract
RGS6 and RGS7 are regulators of G protein signaling (RGS) proteins that inactivate heterotrimeric (αβγ) G proteins and mediate diverse biological functions, such as cardiac and neuronal signaling. Uniquely, both RGS6 and RGS7 can discriminate between Gαo and Gαi1-two similar Gα subunits that belong to the same Gi sub-family. Here, we show that the isolated RGS domains of RGS6 and RGS7 are sufficient to achieve this specificity. We identified three specific RGS6/7 "disruptor residues" that can attenuate RGS interactions toward Gα subunits and demonstrated that their insertion into a representative high-activity RGS causes a significant, yet non-specific, reduction in activity. We further identified a unique "modulatory" residue that bypasses this negative effect, specifically toward Gαo. Hence, the exquisite specificity of RGS6 and RGS7 toward closely related Gα subunits is achieved via a two-tier specificity system, whereby a Gα-specific modulatory motif overrides the inhibitory effect of non-specific disruptor residues. Our findings expand the understanding of the molecular toolkit used by the RGS family to achieve specific interactions with selected Gα subunits-emphasizing the functional importance of the RGS domain in determining the activity and selectivity of RGS R7 sub-family members toward particular Gα subunits.
Collapse
Affiliation(s)
- Ran Israeli
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Ali Asli
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Meirav Avital-Shacham
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
7
|
Navot S, Kosloff M. Structural design principles that underlie the multi-specific interactions of Gα q with dissimilar partners. Sci Rep 2019; 9:6898. [PMID: 31053791 PMCID: PMC6499889 DOI: 10.1038/s41598-019-43395-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Gαq is a ubiquitous molecular switch that activates the effectors phospholipase-C-β3 (PLC-β3) and Rho guanine-nucleotide exchange factors. Gαq is inactivated by regulators of G protein signaling proteins, as well as by PLC-β3. Gαq further interacts with G protein-coupled receptor kinase 2 (GRK2), although the functional role of this interaction is debated. While X-ray structures of Gαq bound to representatives of these partners have revealed details of their interactions, the mechanistic basis for differential Gαq interactions with multiple partners (i.e., Gαq multi-specificity) has not been elucidated at the individual residue resolution. Here, we map the structural determinants of Gαq multi-specificity using structure-based energy calculations. We delineate regions that specifically interact with GTPase Activating Proteins (GAPs) and residues that exclusively contribute to effector interactions, showing that only the Gαq “Switch II” region interacts with all partners. Our analysis further suggests that Gαq-GRK2 interactions are consistent with GRK2 functioning as an effector, rather than a GAP. Our multi-specificity analysis pinpoints Gαq residues that uniquely contribute to interactions with particular partners, enabling precise manipulation of these cascades. As such, we dissect the molecular basis of Gαq function as a central signaling hub, which can be used to target Gαq-mediated signaling in therapeutic interventions.
Collapse
Affiliation(s)
- Shir Navot
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel
| | - Mickey Kosloff
- The Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
8
|
Bakhman A, Rabinovich E, Shlamkovich T, Papo N, Kosloff M. Residue-level determinants of angiopoietin-2 interactions with its receptor Tie2. Proteins 2018; 87:185-197. [PMID: 30520519 DOI: 10.1002/prot.25638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 11/11/2022]
Abstract
We combined computational and experimental methods to interrogate the binding determinants of angiopoietin-2 (Ang2) to its receptor tyrosine kinase (RTK) Tie2-a central signaling system in angiogenesis, inflammation, and tumorigenesis. We used physics-based electrostatic and surface-area calculations to identify the subset of interfacial Ang2 and Tie2 residues that can affect binding directly. Using random and site-directed mutagenesis and yeast surface display (YSD), we validated these predictions and identified additional Ang2 positions that affected receptor binding. We then used burial-based calculations to classify the larger set of Ang2 residues that are buried in the Ang2 core, whose mutations can perturb the Ang2 structure and thereby affect interactions with Tie2 indirectly. Our analysis showed that the Ang2-Tie2 interface is dominated by nonpolar contributions, with only three Ang2 and two Tie2 residues that contribute electrostatically to intermolecular interactions. Individual interfacial residues contributed only moderately to binding, suggesting that engineering of this interface will require multiple mutations to reach major effects. Conversely, substitutions in substantially buried Ang2 residues were more prevalent in our experimental screen, reduced binding substantially, and are therefore more likely to have a deleterious effect that might contribute to oncogenesis. Computational analysis of additional RTK-ligand complexes, c-Kit-SCF and M-CSF-c-FMS, and comparison to previous YSD results, further show the utility of our combined methodology.
Collapse
Affiliation(s)
- Anna Bakhman
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Eitan Rabinovich
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Shlamkovich
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
9
|
Structural motifs in the RGS RZ subfamily combine to attenuate interactions with Gα subunits. Biochem Biophys Res Commun 2018; 503:2736-2741. [DOI: 10.1016/j.bbrc.2018.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 11/20/2022]
|