1
|
Teng L, Sun Y, Chen J, Wang C, Urbach JM, Kobe B, Ye N, Zeng Q. Exon shuffling and alternative splicing of ROCO genes in brown algae enables a diverse repertoire of candidate immune receptors. FRONTIERS IN PLANT SCIENCE 2024; 15:1445022. [PMID: 39246816 PMCID: PMC11378527 DOI: 10.3389/fpls.2024.1445022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024]
Abstract
The ROCO family is a family of GTPases characterized by a central ROC-COR tandem domain. Interest in the structure and function of ROCO proteins has increased with the identification of their important roles in human disease. Nevertheless, the functions of most ROCO proteins are still unknown. In the present study, we characterized the structure, evolution, and expression of ROCOs in four species of brown algae. Brown algae have a larger number of ROCO proteins than other organisms reported to date. Phylogenetic analyses showed that ROCOs have an ancient origin, likely originated in prokaryotes. ROCOs in brown algae clustered into four groups and showed no strong relationship with red algae or green algae. Brown algal ROCOs retain the ancestral LRR-ROC-COR domain arrangement, which is found in prokaryotes, plants and some basal metazoans. Remarkably, individual LRR motifs in ROCO genes are each encoded by separate exons and exhibit intense exon shuffling and diversifying selection. Furthermore, the tandem LRR exons exhibit alternative splicing to generate multiple transcripts. Both exon shuffling and alternative splicing of LRR repeats may be important mechanisms for generating diverse ligand-binding specificities as immune receptors. Besides their potential immune role, expression analysis shows that many ROCO genes are responsive to other stress conditions, suggesting they could participate in multiple signal pathways, not limited to the immune response. Our results substantially enhance our understanding of the structure and function of this mysterious gene family.
Collapse
Affiliation(s)
- Linhong Teng
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Yuhuan Sun
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Jiayi Chen
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Chenghui Wang
- College of Life Sciences, Dezhou University, Dezhou, China
| | - Jonathan M Urbach
- Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, MA, United States
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Naihao Ye
- National Key Laboratory of Mariculture Biobreeding and Sustainable Production, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | |
Collapse
|
2
|
Galicia C, Guaitoli G, Fislage M, Gloeckner CJ, Versées W. Structural insights into the GTP-driven monomerization and activation of a bacterial LRRK2 homolog using allosteric nanobodies. eLife 2024; 13:RP94503. [PMID: 38666771 PMCID: PMC11052575 DOI: 10.7554/elife.94503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson's disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.
Collapse
Affiliation(s)
- Christian Galicia
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Giambattista Guaitoli
- German Center for Neurodegenerative DiseasesTübingenGermany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of TübingenTübingenGermany
| | - Marcus Fislage
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Christian Johannes Gloeckner
- German Center for Neurodegenerative DiseasesTübingenGermany
- Institute for Ophthalmic Research, Center for Ophthalmology, University of TübingenTübingenGermany
| | - Wim Versées
- Structural Biology Brussels, Vrije Universiteit BrusselBrusselsBelgium
- VIB-VUB Center for Structural Biology, VIBBrusselsBelgium
| |
Collapse
|
3
|
Park Y, Liao J, Hoang QQ. Roc, the G-domain of the Parkinson's disease-associated protein LRRK2. Trends Biochem Sci 2022; 47:1038-1047. [PMID: 35840518 PMCID: PMC9669111 DOI: 10.1016/j.tibs.2022.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022]
Abstract
Mutation in leucine-rich repeat (LRR) kinase 2 (LRRK2) is a common cause of Parkinson's disease (PD). Aberrant LRRK2 kinase activity is associated with disease pathogenesis and thus it is an attractive drug target for combating PD. Intense efforts in the past nearly two decades have focused on the development of small-molecule inhibitors of the kinase domain of LRRK2 and have identified potent kinase inhibitors. However, most LRRK2 kinase inhibitors have shown adverse effects; therefore, alternative-mechanism-based strategies are desperately needed. In this review, we discuss the new insights gleaned from recent cryoelectron microscope (cryo-EM) structures of LRRK2 towards understanding the mechanisms of actions of LRRK2 and explore the potential new therapeutic avenues.
Collapse
Affiliation(s)
- Yangshin Park
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jingling Liao
- Department of Public Health, Academy of Nutrition and Health, Wuhan University of Science and Technology School of Medicine, 430074 Wuhan, China.
| | - Quyen Q Hoang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
4
|
Singh A, Padariya M, Faktor J, Kote S, Mikac S, Dziadosz A, Lam TW, Brydon J, Wear MA, Ball KL, Hupp T, Sznarkowska A, Vojtesek B, Kalathiya U. Identification of novel interferon responsive protein partners of human leukocyte antigen A (HLA-A) using cross-linking mass spectrometry (CLMS) approach. Sci Rep 2022; 12:19422. [PMID: 36371414 PMCID: PMC9653400 DOI: 10.1038/s41598-022-21393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
The interferon signalling system elicits a robust cytokine response against a wide range of environmental pathogenic and internal pathological signals, leading to induction of a subset of interferon-induced proteins. We applied DSS (disuccinimidyl suberate) mediated cross-linking mass spectrometry (CLMS) to capture novel protein-protein interactions within the realm of interferon induced proteins. In addition to the expected interferon-induced proteins, we identified novel inter- and intra-molecular cross-linked adducts for the canonical interferon induced proteins, such as MX1, USP18, OAS3, and STAT1. We focused on orthogonal validation of a cohort of novel interferon-induced protein networks formed by the HLA-A protein (H2BFS-HLA-A-HMGA1) using co-immunoprecipitation assay, and further investigated them by molecular dynamics simulation. Conformational dynamics of the simulated protein complexes revealed several interaction sites that mirrored the interactions identified in the CLMS findings. Together, we showcase a proof-of-principle CLMS study to identify novel interferon-induced signaling complexes and anticipate broader use of CLMS to identify novel protein interaction dynamics within the tumour microenvironment.
Collapse
Affiliation(s)
- Ashita Singh
- grid.4305.20000 0004 1936 7988Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR Scotland, UK ,grid.10267.320000 0001 2194 0956Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Monikaben Padariya
- grid.8585.00000 0001 2370 4076International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Jakub Faktor
- grid.8585.00000 0001 2370 4076International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Sachin Kote
- grid.8585.00000 0001 2370 4076International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Sara Mikac
- grid.8585.00000 0001 2370 4076International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Alicja Dziadosz
- grid.8585.00000 0001 2370 4076International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Tak W. Lam
- grid.4305.20000 0004 1936 7988Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR Scotland, UK
| | - Jack Brydon
- grid.4305.20000 0004 1936 7988Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR Scotland, UK
| | - Martin A. Wear
- grid.4305.20000 0004 1936 7988School of Biological Sciences, Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, EH9 3JR UK
| | - Kathryn L. Ball
- grid.4305.20000 0004 1936 7988Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR Scotland, UK
| | - Ted Hupp
- grid.4305.20000 0004 1936 7988Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR Scotland, UK ,grid.8585.00000 0001 2370 4076International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Alicja Sznarkowska
- grid.8585.00000 0001 2370 4076International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Borek Vojtesek
- grid.419466.8RECAMO, Masaryk Memorial Cancer Institute, Zlutykopec 7, 65653 Brno, Czech Republic
| | - Umesh Kalathiya
- grid.8585.00000 0001 2370 4076International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
5
|
Helton LG, Soliman A, von Zweydorf F, Kentros M, Manschwetus JT, Hall S, Gilsbach B, Ho FY, Athanasopoulos PS, Singh RK, LeClair TJ, Versées W, Raimondi F, Herberg FW, Gloeckner CJ, Rideout H, Kortholt A, Kennedy EJ. Allosteric Inhibition of Parkinson's-Linked LRRK2 by Constrained Peptides. ACS Chem Biol 2021; 16:2326-2338. [PMID: 34496561 DOI: 10.1021/acschembio.1c00487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Leucine-Rich Repeat Kinase 2 (LRRK2) is a large, multidomain protein with dual kinase and GTPase function that is commonly mutated in both familial and idiopathic Parkinson's Disease (PD). While dimerization of LRRK2 is commonly detected in PD models, it remains unclear whether inhibition of dimerization can regulate catalytic activity and pathogenesis. Here, we show constrained peptides that are cell-penetrant, bind LRRK2, and inhibit LRRK2 activation by downregulating dimerization. We further show that inhibited dimerization decreases kinase activity and inhibits ROS production and PD-linked apoptosis in primary cortical neurons. While many ATP-competitive LRRK2 inhibitors induce toxicity and mislocalization of the protein in cells, these constrained peptides were found to not affect LRRK2 localization. The ability of these peptides to inhibit pathogenic LRRK2 kinase activity suggests that disruption of dimerization may serve as a new allosteric strategy to downregulate PD-related signaling pathways.
Collapse
Affiliation(s)
- Leah G. Helton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Ahmed Soliman
- Department of Cell Biochemistry, University of Groningen, 9747 Groningen, The Netherlands
| | - Felix von Zweydorf
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| | - Michalis Kentros
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Jascha T. Manschwetus
- Department of Biochemistry, Institute for Biology, University of Kassel, 34132, Kassel, Germany
| | - Scotty Hall
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Bernd Gilsbach
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
| | - Franz Y. Ho
- Department of Cell Biochemistry, University of Groningen, 9747 Groningen, The Netherlands
| | | | - Ranjan K. Singh
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Timothy J. LeClair
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| | - Wim Versées
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Francesco Raimondi
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, 56126, Pisa, Italy
| | - Friedrich W. Herberg
- Department of Biochemistry, Institute for Biology, University of Kassel, 34132, Kassel, Germany
| | - Christian Johannes Gloeckner
- DZNE, German Center for Neurodegenerative Diseases, 72076 Tübingen, Germany
- Core Facility for Medical Bioanalytics, Center for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Hardy Rideout
- Center for Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, 9747 Groningen, The Netherlands
- Department of Pharmacology, Innovative Technologies Application and Research Center, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Eileen J. Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Leschziner AE, Reck-Peterson SL. Structural Biology of LRRK2 and its Interaction with Microtubules. Mov Disord 2021; 36:2494-2504. [PMID: 34423856 PMCID: PMC9290818 DOI: 10.1002/mds.28755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/02/2022] Open
Abstract
Mutations in leucine rich repeat kinase 2 (LRRK2) are a major cause of familial Parkinson's disease (PD) and a risk factor for its sporadic form. LRRK2 hyperactivity has also been reported in sporadic PD, making LRRK2 an appealing target for PD small‐molecule therapeutics. At a cellular level, increasing evidence suggests that LRRK2 regulates membrane trafficking. Under some conditions LRRK2 also associates with microtubules, the cellular tracks used by dynein and kinesin motors to move membranes. At a structural level, however, relatively little was known about LRRK2. An important step toward bridging this gap took place last year with the publication of structures of LRRK2's cytosolic and microtubule‐bound forms. Here, we review the main findings from these studies and discuss what we see as the major challenges going forward with a focus on areas that will require structural information. We also introduce the structural techniques—cryo‐electron microscopy and cryo‐electron tomography—that were instrumental to solving the structures of LRRK2. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA.,Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, California, USA
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA.,Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
7
|
Herbst S, Lewis PA. From structure to ætiology: a new window on the biology of leucine-rich repeat kinase 2 and Parkinson's disease. Biochem J 2021; 478:2945-2951. [PMID: 34328508 PMCID: PMC8331089 DOI: 10.1042/bcj20210383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/20/2023]
Abstract
Since the discovery of mutations in leucine-rich repeat kinase 2 (LRRK2) as an underlying genetic cause for the development of Parkinson's disease (PD) in 2004 (Neuron 44, 601-607; Neuron 44, 595-600), and subsequent efforts to develop LRRK2 kinase inhibitors as a therapy for Parkinson's (Expert Opin. Ther. Targets 21, 751-753), elucidating the atomic resolution structure of LRRK2 has been a major goal of research into this protein. At over 250 kDa, the large size and complicated domain organisation of LRRK2 has made this a highly challenging target for structural biologists, however, a number of recent studies using both in vitro and in situ approaches (Nature 588, 344-349; Cell 182, 1508-1518.e1516; Cell 184, 3519-3527.e3510) have provided important new insights into LRRK2 structure and the complexes formed by this protein.
Collapse
Affiliation(s)
- Susanne Herbst
- Department of Comparative Biomedical Science, Royal Veterinary College, Royal College Street, London, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, U.S.A
| | - Patrick A. Lewis
- Department of Comparative Biomedical Science, Royal Veterinary College, Royal College Street, London, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, U.K
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, U.S.A
- Correspondence: Patrick A. Lewis ()
| |
Collapse
|
8
|
Wojewska DN, Kortholt A. LRRK2 Targeting Strategies as Potential Treatment of Parkinson's Disease. Biomolecules 2021; 11:1101. [PMID: 34439767 PMCID: PMC8392603 DOI: 10.3390/biom11081101] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's Disease (PD) affects millions of people worldwide with no cure to halt the progress of the disease. Leucine-rich repeat kinase 2 (LRRK2) is the most common genetic cause of PD and, as such, LRRK2 inhibitors are promising therapeutic agents. In the last decade, great progress in the LRRK2 field has been made. This review provides a comprehensive overview of the current state of the art, presenting recent developments and challenges in developing LRRK2 inhibitors, and discussing extensively the potential targeting strategies from the protein perspective. As currently there are three LRRK2-targeting agents in clinical trials, more developments are predicted in the upcoming years.
Collapse
Affiliation(s)
- Dominika Natalia Wojewska
- Faculty of Science and Engineering, University of Groningen, Nijenborg 7, 9747AG Groningen, The Netherlands;
| | - Arjan Kortholt
- Faculty of Science and Engineering, University of Groningen, Nijenborg 7, 9747AG Groningen, The Netherlands;
- YETEM-Innovative Technologies Application and Research Center, Suleyman Demirel University, 32260 Isparta, Turkey
| |
Collapse
|
9
|
Conformation and dynamics of the kinase domain drive subcellular location and activation of LRRK2. Proc Natl Acad Sci U S A 2021; 118:2100844118. [PMID: 34088839 PMCID: PMC8201809 DOI: 10.1073/pnas.2100844118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To explore how pathogenic mutations of the multidomain leucine-rich repeat kinase 2 (LRRK2) hijack its finely tuned activation process and drive Parkinson's disease (PD), we used a multitiered approach. Most mutations mimic Rab-mediated activation by "unleashing" kinase activity, and many, like the kinase inhibitor MLi-2, trap LRRK2 onto microtubules. Here we mimic activation by simply deleting the inhibitory N-terminal domains and then characterize conformational changes induced by MLi-2 and PD mutations. After confirming that LRRK2RCKW retains full kinase activity, we used hydrogen-deuterium exchange mass spectrometry to capture breathing dynamics in the presence and absence of MLi-2. Solvent-accessible regions throughout the entire protein are reduced by MLi-2 binding. With molecular dynamics simulations, we created a dynamic portrait of LRRK2RCKW and demonstrate the consequences of kinase domain mutations. Although all domains contribute to regulating kinase activity, the kinase domain, driven by the DYGψ motif, is the allosteric hub that drives LRRK2 regulation.
Collapse
|
10
|
Myasnikov A, Zhu H, Hixson P, Xie B, Yu K, Pitre A, Peng J, Sun J. Structural analysis of the full-length human LRRK2. Cell 2021; 184:3519-3527.e10. [PMID: 34107286 DOI: 10.1016/j.cell.2021.05.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are commonly implicated in the pathogenesis of both familial and sporadic Parkinson's disease (PD). LRRK2 regulates critical cellular processes at membranous organelles and forms microtubule-based pathogenic filaments, yet the molecular basis underlying these biological roles of LRRK2 remains largely enigmatic. Here, we determined high-resolution structures of full-length human LRRK2, revealing its architecture and key interdomain scaffolding elements for rationalizing disease-causing mutations. The kinase domain of LRRK2 is captured in an inactive state, a conformation also adopted by the most common PD-associated mutation, LRRK2G2019S. This conformation serves as a framework for structure-guided design of conformational specific inhibitors. We further determined the structure of COR-mediated LRRK2 dimers and found that single-point mutations at the dimer interface abolished pathogenic filamentation in cells. Overall, our study provides mechanistic insights into physiological and pathological roles of LRRK2 and establishes a structural template for future therapeutic intervention in PD.
Collapse
Affiliation(s)
- Alexander Myasnikov
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Cryo-EM and Tomography Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Hanwen Zhu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Patricia Hixson
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Boer Xie
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kaiwen Yu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Aaron Pitre
- Cell & Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ji Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
11
|
Deniston CK, Salogiannis J, Mathea S, Snead DM, Lahiri I, Matyszewski M, Donosa O, Watanabe R, Böhning J, Shiau AK, Knapp S, Villa E, Reck-Peterson SL, Leschziner AE. Structure of LRRK2 in Parkinson's disease and model for microtubule interaction. Nature 2020; 588:344-349. [PMID: 32814344 PMCID: PMC7726071 DOI: 10.1038/s41586-020-2673-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 08/12/2020] [Indexed: 12/22/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is the most commonly mutated gene in familial Parkinson's disease1 and is also linked to its idiopathic form2. LRRK2 has been proposed to function in membrane trafficking3 and colocalizes with microtubules4. Despite the fundamental importance of LRRK2 for understanding and treating Parkinson's disease, structural information on the enzyme is limited. Here we report the structure of the catalytic half of LRRK2, and an atomic model of microtubule-associated LRRK2 built using a reported cryo-electron tomography in situ structure5. We propose that the conformation of the LRRK2 kinase domain regulates its interactions with microtubules, with a closed conformation favouring oligomerization on microtubules. We show that the catalytic half of LRRK2 is sufficient for filament formation and blocks the motility of the microtubule-based motors kinesin 1 and cytoplasmic dynein 1 in vitro. Kinase inhibitors that stabilize an open conformation relieve this interference and reduce the formation of LRRK2 filaments in cells, whereas inhibitors that stabilize a closed conformation do not. Our findings suggest that LRRK2 can act as a roadblock for microtubule-based motors and have implications for the design of therapeutic LRRK2 kinase inhibitors.
Collapse
Affiliation(s)
- C K Deniston
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Genomics Institute of the Novartis Research Foundation, La Jolla, CA, USA
| | - J Salogiannis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - S Mathea
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany
| | - D M Snead
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - I Lahiri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - M Matyszewski
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - O Donosa
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - R Watanabe
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA, USA
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - J Böhning
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA, USA
- Sir William Dunn School of Pathology, Oxford University, Oxford, UK
| | - A K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA, USA
| | - S Knapp
- Institute of Pharmaceutical Chemistry, Goethe-Universität, Frankfurt, Germany
| | - E Villa
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA, USA
| | - S L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA, USA.
| | - A E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Taylor SS, Kaila-Sharma P, Weng JH, Aoto P, Schmidt SH, Knapp S, Mathea S, Herberg FW. Kinase Domain Is a Dynamic Hub for Driving LRRK2 Allostery. Front Mol Neurosci 2020; 13:538219. [PMID: 33122997 PMCID: PMC7573214 DOI: 10.3389/fnmol.2020.538219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Protein kinases and GTPases are the two major molecular switches that regulate much of biology, and both of these domains are embedded within the large multi-domain Leucine-Rich Repeat Kinase 2 (LRRK2). Mutations in LRRK2 are the most common cause of familial Parkinson's disease (PD) and are also implicated in Crohn's disease. The recent Cryo-Electron Microscopy (Cryo-EM) structure of the four C-terminal domains [ROC COR KIN WD40 (RCKW)] of LRRK2 includes both of the catalytic domains. Although the important allosteric N-terminal domains are missing in the Cryo-EM structure this structure allows us to not only explore the conserved features of the kinase domain, which is trapped in an inactive and open conformation but also to observe the direct allosteric cross-talk between the two domains. To define the unique features of the kinase domain and to better understand the dynamic switch mechanism that allows LRRK2 to toggle between its inactive and active conformations, we have compared the LRRK2 kinase domain to Src, BRaf, and PKA. We also compare and contrast the two canonical glycine-rich loop motifs in LRRK2 that anchor the nucleotide: the G-Loop in protein kinases that anchors ATP and the P-Loop in GTPases that anchors GTP. The RCKW structure also provides a template for the cross-talk between the kinase and GTPase domains and brings new mechanistic insights into the physiological function of LRRK2 and how the kinase domain, along with key phosphorylation sites, can serve as an allosteric hub for mediating conformational changes.
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States.,Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States
| | - Pallavi Kaila-Sharma
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Jui-Hung Weng
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Phillip Aoto
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Sven H Schmidt
- Department of Biochemistry, Institute for Biology, University of Kassel, Kassel, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, Frankfurt, Germany
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany.,Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, Frankfurt, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, Institute for Biology, University of Kassel, Kassel, Germany
| |
Collapse
|
13
|
Allosteric modulation of the GTPase activity of a bacterial LRRK2 homolog by conformation-specific Nanobodies. Biochem J 2020; 477:1203-1218. [PMID: 32167135 PMCID: PMC7135905 DOI: 10.1042/bcj20190843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 01/02/2023]
Abstract
Mutations in the Parkinson's disease (PD)-associated protein leucine-rich repeat kinase 2 (LRRK2) commonly lead to a reduction of GTPase activity and increase in kinase activity. Therefore, strategies for drug development have mainly been focusing on the design of LRRK2 kinase inhibitors. We recently showed that the central RocCOR domains (Roc: Ras of complex proteins; COR: C-terminal of Roc) of a bacterial LRRK2 homolog cycle between a dimeric and monomeric form concomitant with GTP binding and hydrolysis. PD-associated mutations can slow down GTP hydrolysis by stabilizing the protein in its dimeric form. Here, we report the identification of two Nanobodies (NbRoco1 and NbRoco2) that bind the bacterial Roco protein (CtRoco) in a conformation-specific way, with a preference for the GTP-bound state. NbRoco1 considerably increases the GTP turnover rate of CtRoco and reverts the decrease in GTPase activity caused by a PD-analogous mutation. We show that NbRoco1 exerts its effect by allosterically interfering with the CtRoco dimer–monomer cycle through the destabilization of the dimeric form. Hence, we provide the first proof of principle that allosteric modulation of the RocCOR dimer–monomer cycle can alter its GTPase activity, which might present a potential novel strategy to overcome the effect of LRRK2 PD mutations.
Collapse
|
14
|
Stiegler AL, Boggon TJ. The pseudoGTPase group of pseudoenzymes. FEBS J 2020; 287:4232-4245. [PMID: 32893973 PMCID: PMC7544640 DOI: 10.1111/febs.15554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Pseudoenzymes are emerging as significant mediators and regulators of signal transduction. These proteins maintain enzyme folds and topologies, but are disrupted in the conserved motifs required for enzymatic activity. Among the pseudoenzymes, the pseudoGTPase group of atypical GTPases has recently expanded and includes the Rnd and RGK groups, RhoH and the RhoBTB proteins, mitochondrial RhoGTPase and centaurin-γ groups, CENP-M, dynein LIC, Entamoeba histolytica RabX3, leucine-rich repeat kinase 2, and the p190RhoGAP proteins. The wide range of cellular functions associated with pseudoGTPases includes cell migration and adhesion, membrane trafficking and cargo transport, mitosis, mitochondrial activity, transcriptional control, and autophagy, placing the group in an expanding portfolio of signaling pathways. In this review, we examine how the pseudoGTPases differ from canonical GTPases and consider their mechanistic and functional roles in signal transduction. We review the amino acid differences between the pseudoGTPases and discuss how these proteins can be classified based on their ability to bind nucleotide and their enzymatic activity. We discuss the molecular and structural consequences of amino acid divergence from canonical GTPases and use comparison with the well-studied pseudokinases to illustrate the classifications. PseudoGTPases are fast becoming recognized as important mechanistic components in a range of cellular roles, and we provide a concise discussion of the currently identified members of this group. ENZYMES: small GTPases; EC number: EC 3.6.5.2.
Collapse
Affiliation(s)
- Amy L. Stiegler
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J. Boggon
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Departments of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
- Yale Cancer Center, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
15
|
The In Situ Structure of Parkinson's Disease-Linked LRRK2. Cell 2020; 182:1508-1518.e16. [PMID: 32783917 DOI: 10.1016/j.cell.2020.08.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/28/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of familial Parkinson's disease. LRRK2 is a multi-domain protein containing a kinase and GTPase. Using correlative light and electron microscopy, in situ cryo-electron tomography, and subtomogram analysis, we reveal a 14-Å structure of LRRK2 bearing a pathogenic mutation that oligomerizes as a right-handed double helix around microtubules, which are left-handed. Using integrative modeling, we determine the architecture of LRRK2, showing that the GTPase and kinase are in close proximity, with the GTPase closer to the microtubule surface, whereas the kinase is exposed to the cytoplasm. We identify two oligomerization interfaces mediated by non-catalytic domains. Mutation of one of these abolishes LRRK2 microtubule-association. Our work demonstrates the power of cryo-electron tomography to generate models of previously unsolved structures in their cellular environment.
Collapse
|
16
|
Kinase activity of mutant LRRK2 manifests differently in hetero-dimeric vs. homo-dimeric complexes. Biochem J 2019; 476:559-579. [PMID: 30670570 DOI: 10.1042/bcj20180589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 01/04/2023]
Abstract
The Parkinson's disease (PD) protein leucine-rich repeat kinase 2 (LRRK2) exists as a mixture of monomeric and dimeric species, with its kinase activity highly concentrated in the dimeric conformation of the enzyme. We have adapted the proximity biotinylation approach to study the formation and activity of LRRK2 dimers isolated from cultured cells. We find that the R1441C and I2020T mutations both enhance the rate of dimer formation, whereas, the G2019S kinase domain mutant is similar to WT, and the G2385R risk factor variant de-stabilizes dimers. Interestingly, we find a marked departure in the kinase activity between G2019S-LRRK2 homo-dimers and wild-type-G2019S hetero-dimers. While the homo-dimeric G2019S-LRRK2 exhibits the typical robust enhancement of kinase activity, hetero-dimers comprised of wild-type (WT) and G2019S-LRRK2 exhibit kinase activity similar to WT. Dimeric complexes of specific mutant forms of LRRK2 show reduced stability following an in vitro kinase reaction, in LRRK2 mutants for which the kinase activity is similar to WT. Phosphorylation of the small GTPase Rab10 follows a similar pattern in which hetero-dimers of WT and mutant LRRK2 show similar levels of phosphorylation of Rab10 to WT homo-dimers; while the levels of pRab10 are significantly increased in cells expressing mutant homo-dimers. Interestingly, while the risk variant G2385R leads to a de-stabilization of LRRK2 dimers, those dimers possess significantly elevated kinase activity. The vast majority of familial LRRK2-dependent PD cases are heterozygous; thus, these findings raise the possibility that a crucial factor in disease pathogenesis may be the accumulation of homo-dimeric mutant LRRK2.
Collapse
|
17
|
Wauters L, Versées W, Kortholt A. Roco Proteins: GTPases with a Baroque Structure and Mechanism. Int J Mol Sci 2019; 20:ijms20010147. [PMID: 30609797 PMCID: PMC6337361 DOI: 10.3390/ijms20010147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 01/05/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of genetically inherited Parkinson’s Disease (PD). LRRK2 is a large, multi-domain protein belonging to the Roco protein family, a family of GTPases characterized by a central RocCOR (Ras of complex proteins/C-terminal of Roc) domain tandem. Despite the progress in characterizing the GTPase function of Roco proteins, there is still an ongoing debate concerning the working mechanism of Roco proteins in general, and LRRK2 in particular. This review consists of two parts. First, an overview is given of the wide evolutionary range of Roco proteins, leading to a variety of physiological functions. The second part focusses on the GTPase function of the RocCOR domain tandem central to the action of all Roco proteins, and progress in the understanding of its structure and biochemistry is discussed and reviewed. Finally, based on the recent work of our and other labs, a new working hypothesis for the mechanism of Roco proteins is proposed.
Collapse
Affiliation(s)
- Lina Wauters
- VIB-VUB Center for Structural Biology, Pleinlaan 2, B-1050 Brussels, Belgium.
- Department of Cell Biochemistry, University of Groningen, NL-9747 AG Groningen, The Netherlands.
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Wim Versées
- VIB-VUB Center for Structural Biology, Pleinlaan 2, B-1050 Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, NL-9747 AG Groningen, The Netherlands.
| |
Collapse
|