1
|
Wang X, Zhong Y, Zheng C, Huang C, Yao H, Guo Z, Wu Y, Wang Z, Wu Z, Ge R, Cheng W, Yan Y, Jiang S, Sun J, Li J, Xie Q, Li X, Wang H. Transcriptome and metabolome analyses reveal the effects of formula and breast milk on the growth and development of human small intestinal organoids. Food Res Int 2024; 195:114999. [PMID: 39277258 DOI: 10.1016/j.foodres.2024.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024]
Abstract
Breast milk is widely acknowledged as the ideal nutritional resource for infants and can well meet the nutritional requirements for baby's growth and development. Infant formula is a substitute for breast milk, designed to closely mimic its composition and function for breast milk. Most of the previous studies used tumor colorectal cancer cell lines to study the nutritional potency of formula and its components, so realistic data closer to the baby could not be obtained. Small intestinal organoids, derived from differentiated human embryonic stem cells, can be used to simulate nutrient absorption and metabolism in vitro. In this experiment, we used small intestinal organoids to compare the nutrient absorption and metabolism of three infant formulae for 0-6 months with breast milk samples. Transcriptome and metabolome sequencing methods were used to analyze the differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs). The pathways related to DEGs, DEMs were enriched using GO, KEGG, GSEA and other methods to investigate their biological characteristics. We have found that both formula and breast milk promote the development of the infant's immune system, nutrient absorption and intestinal development. In PMH1 we found that the addition of oligofructose to milk powder promoted lipid metabolism and absorption. In PMH2 we found that whey protein powder favours the development of the immune system in infants. In PMH3 we found that oligogalactans may act on the brain-gut axis by regulating the intestinal flora, thereby promoting axon formation and neural development. By linking these biological properties of the milk powder with its composition, we confirmed the effects of added ingredients on the growth and development of infants. Also, we demonstrated the validity of small intestine organoids as a model for absorption and digestion in vitro. Through the above analyses, the advantages and disadvantages of the roles of formula and breast milk in the growth and metabolism of infants were also compared.
Collapse
Affiliation(s)
- Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yiming Zhong
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengdong Zheng
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Chenxuan Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiyang Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zimo Guo
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yilun Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zening Wang
- Institutes of Biomedical Sciences, Fudan University, 131 Dongan Road, Shanghai, 200032, China
| | - Zhengyang Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruihong Ge
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuanyuan Yan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shilong Jiang
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Jianguo Sun
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Jingquan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd., Chaoyang, Beijing 100015, China
| | - Xiaoguang Li
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Chen Y, Chu R, Ma K, Jiang L, Yang Q, Li Z, Hu M, Guo Q, Lu F, Wei Y, Zhang Y, Tong Y. Study of sulfoglycolysis in Enterococcus gilvus reveals a widespread bifurcated pathway for dihydroxypropanesulfonate degradation. iScience 2024; 27:111010. [PMID: 39429772 PMCID: PMC11489063 DOI: 10.1016/j.isci.2024.111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Sulfoquinovose (SQ), the polar head group of sulfolipids essential for photosynthesis, is naturally abundant. Anaerobic Firmicutes degrade SQ through a transaldolase-dependent (sulfo-TAL) pathway, producing dihydroxypropanesulfonate (DHPS). Some bacteria extend this pathway by the sequential action of HpfG and HpfD converting DHPS to 3-hydroxypropanesulfonate (3-HPS) via 3-sulfopropionaldehyde (3-SPA). Here, we report a variant sulfo-TAL pathway in Enterococcus gilvus, involving additional enzymes, a NAD+-dependent 3-SPA dehydrogenase HpfX, and a 3-sulfopropionyl-CoA synthetase HpfYZ, which oxidize 3-SPA to 3-sulfopropionate (3-SP) coupled with ATP formation. E. gilvus grown on SQ or DHPS produced a mixture of 3-HPS and 3-SP, indicating the bifurcated pathway. Similar genes are found in various Firmicutes, including gut bacteria. Importantly, 3-SP, but not 3-HPS, can serve as a respiratory terminal electron acceptor for Bilophila wadsworthia, a common intestinal pathobiont, resulting in the production of toxic H2S. This research expands our understanding of sulfonate metabolism and reveals cross-feeding in the anaerobic microbiome.
Collapse
Affiliation(s)
- Yiwei Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruoxing Chu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kailiang Ma
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Li Jiang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiaoyu Yang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zhi Li
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Min Hu
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiuyi Guo
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore 138669, Singapore
| | - Yan Zhang
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Carbon-Negative Synthetic Biology for Biomaterial Production from CO2 (CNSB), Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Yang Tong
- New Cornerstone Science Laboratory, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Qian W, Li M, Yu L, Tian F, Zhao J, Zhai Q. Effects of Taurine on Gut Microbiota Homeostasis: An Evaluation Based on Two Models of Gut Dysbiosis. Biomedicines 2023; 11:biomedicines11041048. [PMID: 37189666 DOI: 10.3390/biomedicines11041048] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Taurine, an abundant free amino acid, plays multiple roles in the body, including bile acid conjugation, osmoregulation, oxidative stress, and inflammation prevention. Although the relationship between taurine and the gut has been briefly described, the effects of taurine on the reconstitution of intestinal flora homeostasis under conditions of gut dysbiosis and underlying mechanisms remain unclear. This study examined the effects of taurine on the intestinal flora and homeostasis of healthy mice and mice with dysbiosis caused by antibiotic treatment and pathogenic bacterial infections. The results showed that taurine supplementation could significantly regulate intestinal microflora, alter fecal bile acid composition, reverse the decrease in Lactobacillus abundance, boost intestinal immunity in response to antibiotic exposure, resist colonization by Citrobacter rodentium, and enhance the diversity of flora during infection. Our results indicate that taurine has the potential to shape the gut microbiota of mice and positively affect the restoration of intestinal homeostasis. Thus, taurine can be utilized as a targeted regulator to re-establish a normal microenvironment and to treat or prevent gut dysbiosis.
Collapse
|
4
|
Lin H, Yu Y, Zhu L, Lai N, Zhang L, Guo Y, Lin X, Yang D, Ren N, Zhu Z, Dong Q. Implications of hydrogen sulfide in colorectal cancer: Mechanistic insights and diagnostic and therapeutic strategies. Redox Biol 2023; 59:102601. [PMID: 36630819 PMCID: PMC9841368 DOI: 10.1016/j.redox.2023.102601] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/09/2023] Open
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule in colorectal cancer (CRC). It is produced in the colon by the catalytic synthesis of the colonocytes' enzymatic systems and the release of intestinal microbes, and is oxidatively metabolized in the colonocytes' mitochondria. Both endogenous H2S in colonic epithelial cells and exogenous H2S in intestinal lumen contribute to the onset and progression of CRC. The up-regulation of endogenous synthetases is thought to be the cause of the elevated H2S levels in CRC cells. Different diagnostic probes and combination therapies, as well as tumor treatment approaches through H2S modulation, have been developed in recent years and have become active area of investigation for the diagnosis and treatment of CRC. In this review, we focus on the specific mechanisms of H2S production and oxidative metabolism as well as the function of H2S in the occurrence, progression, diagnosis, and treatment of CRC. We also discuss the present challenges and provide insights into the future research of this burgeoning field.
Collapse
Affiliation(s)
- Hanchao Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China; Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Nannan Lai
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Luming Zhang
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Yu Guo
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, China
| | - Xinxin Lin
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China
| | - Dongqin Yang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, China.
| | - Ning Ren
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China; Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, And Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, China.
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, China.
| | - Qiongzhu Dong
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission, Minhang Hospital, Fudan University, China.
| |
Collapse
|
5
|
Abstract
Sulfonates include diverse natural products and anthropogenic chemicals and are widespread in the environment. Many bacteria can degrade sulfonates and obtain sulfur, carbon, and energy for growth, playing important roles in the biogeochemical sulfur cycle. Cleavage of the inert sulfonate C-S bond involves a variety of enzymes, cofactors, and oxygen-dependent and oxygen-independent catalytic mechanisms. Sulfonate degradation by strictly anaerobic bacteria was recently found to involve C-S bond cleavage through O2-sensitive free radical chemistry, catalyzed by glycyl radical enzymes (GREs). The associated discoveries of new enzymes and metabolic pathways for sulfonate metabolism in diverse anaerobic bacteria have enriched our understanding of sulfonate chemistry in the anaerobic biosphere. An anaerobic environment of particular interest is the human gut microbiome, where sulfonate degradation by sulfate- and sulfite-reducing bacteria (SSRB) produces H2S, a process linked to certain chronic diseases and conditions.
Collapse
Affiliation(s)
- Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology; and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China;
| |
Collapse
|
6
|
New structural insights into bacterial sulfoacetaldehyde and taurine metabolism. Biochem J 2020; 477:1367-1371. [PMID: 32322897 DOI: 10.1042/bcj20200079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 01/17/2023]
Abstract
In last year's issue 4 of Biochemical Journal, Zhou et al. (Biochem J. 476, 733-746) kinetically and structurally characterized the reductase IsfD from Klebsiella oxytoca that catalyzes the reversible reduction in sulfoacetaldehyde to the corresponding alcohol isethionate. This is a key step in detoxification of the carbonyl intermediate formed in bacterial nitrogen assimilation from the α-aminoalkanesulfonic acid taurine. In 2019, the work on sulfoacetaldehyde reductase IsfD was the exciting start to a quite remarkable series of articles dealing with structural elucidation of proteins involved in taurine metabolism as well as the discovery of novel degradation pathways in bacteria.
Collapse
|
7
|
A Pathway for Degradation of Uracil to Acetyl Coenzyme A in Bacillus megaterium. Appl Environ Microbiol 2020; 86:AEM.02837-19. [PMID: 31953335 DOI: 10.1128/aem.02837-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/10/2020] [Indexed: 11/20/2022] Open
Abstract
Bacteria utilize diverse biochemical pathways for the degradation of the pyrimidine ring. The function of the pathways studied to date has been the release of nitrogen for assimilation. The most widespread of these pathways is the reductive pyrimidine catabolic pathway, which converts uracil into ammonia, carbon dioxide, and β-alanine. Here, we report the characterization of a β-alanine:pyruvate aminotransferase (PydD2) and an NAD+-dependent malonic semialdehyde dehydrogenase (MSDH) from a reductive pyrimidine catabolism gene cluster in Bacillus megaterium Together, these enzymes convert β-alanine into acetyl coenzyme A (acetyl-CoA), a key intermediate in carbon and energy metabolism. We demonstrate the growth of B. megaterium in defined medium with uracil as its sole carbon and energy source. Homologs of PydD2 and MSDH are found in association with reductive pyrimidine pathway genes in many Gram-positive bacteria in the order Bacillales Our study provides a basis for further investigations of the utilization of pyrimidines as a carbon and energy source by bacteria.IMPORTANCE Pyrimidine has wide occurrence in natural environments, where bacteria use it as a nitrogen and carbon source for growth. Detailed biochemical pathways have been investigated with focus mainly on nitrogen assimilation in the past decades. Here, we report the discovery and characterization of two important enzymes, PydD2 and MSDH, which constitute an extension for the reductive pyrimidine catabolic pathway. These two enzymes, prevalent in Bacillales based on our bioinformatics studies, allow stepwise conversion of β-alanine, a previous "end product" of the reductive pyrimidine degradation pathway, to acetyl-CoA as carbon and energy source.
Collapse
|
8
|
Yin J, Wei Y, Liu D, Hu Y, Lu Q, Ang EL, Zhao H, Zhang Y. An extended bacterial reductive pyrimidine degradation pathway that enables nitrogen release from β-alanine. J Biol Chem 2019; 294:15662-15671. [PMID: 31455636 DOI: 10.1074/jbc.ra119.010406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/26/2019] [Indexed: 11/06/2022] Open
Abstract
The reductive pyrimidine catabolic pathway is the most widespread pathway for pyrimidine degradation in bacteria, enabling assimilation of nitrogen for growth. This pathway, which has been studied in several bacteria including Escherichia coli B, releases only one utilizable nitrogen atom from each molecule of uracil, whereas the other nitrogen atom remains trapped in the end product β-alanine. Here, we report the biochemical characterization of a β-alanine:2-oxoglutarate aminotransferase (PydD) and an NAD(P)H-dependent malonic semialdehyde reductase (PydE) from a pyrimidine degradation gene cluster in the bacterium Lysinibacillus massiliensis Together, these two enzymes converted β-alanine into 3-hydroxypropionate (3-HP) and generated glutamate, thereby making the second nitrogen from the pyrimidine ring available for assimilation. Using bioinformatics analyses, we found that PydDE homologs are associated with reductive pyrimidine pathway genes in many Gram-positive bacteria in the classes Bacilli and Clostridia. We demonstrate that Bacillus smithii grows in a defined medium with uracil or uridine as its sole nitrogen source and detected the accumulation of 3-HP as a waste product. Our findings extend the reductive pyrimidine catabolic pathway and expand the diversity of enzymes involved in bacterial pyrimidine degradation.
Collapse
Affiliation(s)
- Jinyu Yin
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yifeng Wei
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dazhi Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yiling Hu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiang Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Ee Lui Ang
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
A gene cluster for taurine sulfur assimilation in an anaerobic human gut bacterium. Biochem J 2019; 476:2271-2279. [DOI: 10.1042/bcj20190486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/17/2022]
Abstract
AbstractAminoethylsulfonate (taurine) is widespread in the environment and highly abundant in the human body. Taurine and other aliphatic sulfonates serve as sulfur sources for diverse aerobic bacteria, which carry out cleavage of the inert sulfonate C–S bond through various O2-dependent mechanisms. Taurine also serves as a sulfur source for certain strict anaerobic fermenting bacteria. However, the mechanism of C–S cleavage by these bacteria has long been a mystery. Here we report the biochemical characterization of an anaerobic pathway for taurine sulfur assimilation in a strain of Clostridium butyricum from the human gut. In this pathway, taurine is first converted to hydroxyethylsulfonate (isethionate), followed by C–S cleavage by the O2-sensitive isethionate sulfo-lyase IseG, recently identified in sulfate- and sulfite-reducing bacteria. Homologs of the enzymes described in this study have a sporadic distribution in diverse strict and facultative anaerobic bacteria, from both the environment and the taurine-rich human gut, and may enable sulfonate sulfur acquisition in certain nutrient limiting conditions.
Collapse
|