1
|
Ma S, Lin J, Yang M, Wang J, Lu L, Liang Y, Yang Y, Liu Y, Wang D, Yang Y. Zhuangyao Jianshen Wan ameliorates senile osteoporosis in SAMP6 mice through Modulation of the GCN5L1-mediated PI3K/Akt/wnt signaling pathway. J Orthop Translat 2024; 49:308-324. [PMID: 39568803 PMCID: PMC11576941 DOI: 10.1016/j.jot.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 08/08/2024] [Indexed: 11/22/2024] Open
Abstract
Background Senile osteoporosis (SOP) is a systemic bone disease characterized by increased susceptibility to fractures. However, there is currently no effective treatment for SOP. The Zhuangyao Jianshen Wan (ZYJSW) pill is traditionally believed to possess kidney-nourishing and bone-strengthening effects, demonstrating efficacy in treating fractures. Despite this, its effectiveness and mechanism in SOP remain unclear. This study aims to investigate the therapeutic potential of ZYJSW in treating SOP in senescence accelerated mouse prone 6 (SAMP6, P6) mice, and elucidate the underlying mechanisms. Methods Four-month-old SAMP6 mice were categorized into six groups: the model group (SAMP6), low, medium, and high-dose ZYJSW treatment groups, calcitriol treatment (positive control 1) group, and metformin treatment (positive control 2) group. Gastric administration was carried out for 15 weeks, and a normal control group comprising four-month-old Senescence-Accelerated Mouse Resistant 1 (SAMR1) mice. Changes in body weight, liver and kidney function, bone protective effects, and muscle quality were evaluated using various assays, including H&E staining, Goldner staining, bone tissue morphology analysis, Micro-CT imaging, and biomechanical testing. Qualitative analysis and quality control of ZYJSW were performed via LC-MS/MS analysis. To explore mechanisms, network pharmacology and proteomics were employed, and the identified proteins were validated by Western blotting. Results Oral administration of ZYJSW to P6 mice exerted preventive efficacy against osteopenia, impaired bone microstructure, and poor bone and muscle quality. ZYJSW attenuated the imbalance in bone metabolism by promoting bone formation, as evidenced by the upregulation of key factors such as Runt-related transcription factor 2 (RUNX2), Bone Morphogenetic Protein (BMP2), Osteoprotegerin (OPG) and Osteocalcin (OCN), while simultaneously inhibiting bone resorption through the downregulation of TNF receptor associated factor 6 (TRAF6), Tartrate resistant acid phosphatase (TRAP), Receptor activator for nuclear factor-κB ligand (RANKL) and Cathepsin K (CTSK). Additionally, ZYJSW enhanced muscle structure and function by counteracting the elevation of Ubiquitin (Ub), Muscle RING-finger protein-1 (Murf-1), F-Box Protein 32 (FBOX32), and Myogenin (Myog). Network pharmacology predictions, proteomics analysis corroborated by published literature demonstrated the role of ZYJSW involving in safeguarding mitochondrial biogenesis. This was achieved by suppressing GCN5L1 expression, contributing to the heightened expression of TFAM, PGC-1α, and nuclear respiratory factor-1 (NRF-1) proteins. ZYJSW also positively modulated Wnt signaling pathways responsible for bone formation, due to regulating expressions of key components like β-catenin, GSK-3β, and LRP5. In addition, ZYJSW causes the downregulation of the PI3K/Akt pathway by inhibiting the phosphorylation of both PI3K and Akt. Conclusions The study highlights the significance of ZYJSW in preserving the health of both bone and muscle in P6 mice, potentially through the regulation of the GCN5L1-mediated PI3K/Akt/Wnt signaling pathway. The translational potential of this article Our research provides evidence and a mechanistic rationale for ZYJSW as a candidate for SOP treatment, offering insights for further exploration and strategy development.
Collapse
Affiliation(s)
- Shaoyong Ma
- Department of Pharmacology, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
- The Second Affiliated Hospital, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Jian Lin
- Department of Pharmacology, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Meng Yang
- Department of Pharmacology, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - JiaJia Wang
- School of Traditional Chinese Medicine, Zhanjiang University of Science and Technology, Zhanjiang 524094, Guangdong, China
| | - Lujiao Lu
- Affiliated Hospital, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Ying Liang
- School of Women and Children's Medicine, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yan Yang
- Department of Pharmacology, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yanzhi Liu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524037, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, Guangdong, China
| | - Yajun Yang
- Department of Pharmacology, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| |
Collapse
|
2
|
Bugga P, Manning JR, Mushala BAS, Stoner MW, Sembrat J, Scott I. GCN5L1-mediated acetylation prevents Rictor degradation in cardiac cells after hypoxic stress. Cell Signal 2024; 116:111065. [PMID: 38281616 PMCID: PMC10922666 DOI: 10.1016/j.cellsig.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.
Collapse
Affiliation(s)
- Paramesha Bugga
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Janet R Manning
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Bellina A S Mushala
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Michael W Stoner
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Iain Scott
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States of America; Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
3
|
Ragupathi A, Kim C, Jacinto E. The mTORC2 signaling network: targets and cross-talks. Biochem J 2024; 481:45-91. [PMID: 38270460 PMCID: PMC10903481 DOI: 10.1042/bcj20220325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1. Despite the lack of a specific mTORC2 inhibitor, genetic studies that disrupt mTORC2 expression unravel the functions of this more elusive mTOR complex. Like mTORC1 which responds to growth signals, mTORC2 is also activated by anabolic signals but is additionally triggered by stress. mTORC2 mediates signals from growth factor receptors and G-protein coupled receptors. How stress conditions such as nutrient limitation modulate mTORC2 activation to allow metabolic reprogramming and ensure cell survival remains poorly understood. A variety of downstream effectors of mTORC2 have been identified but the most well-characterized mTORC2 substrates include Akt, PKC, and SGK, which are members of the AGC protein kinase family. Here, we review how mTORC2 is regulated by cellular stimuli including how compartmentalization and modulation of complex components affect mTORC2 signaling. We elaborate on how phosphorylation of its substrates, particularly the AGC kinases, mediates its diverse functions in growth, proliferation, survival, and differentiation. We discuss other signaling and metabolic components that cross-talk with mTORC2 and the cellular output of these signals. Lastly, we consider how to more effectively target the mTORC2 pathway to treat diseases that have deregulated mTOR signaling.
Collapse
Affiliation(s)
- Aparna Ragupathi
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Christian Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A
| |
Collapse
|
4
|
Xu W, Ma X, Wang Q, Ye J, Wang N, Ye Z, Chen T. GCN5L1 regulates pulmonary surfactant production by modulating lamellar body biogenesis and trafficking in mouse alveolar epithelial cells. Cell Mol Biol Lett 2023; 28:90. [PMID: 37936104 PMCID: PMC10631113 DOI: 10.1186/s11658-023-00506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND The pulmonary surfactant that lines the air-liquid surface within alveoli is a protein-lipid mixture essential for gas exchange. Surfactant lipids and proteins are synthesized and stored in the lamellar body (LB) before being secreted from alveolar type II (AT2) cells. The molecular and cellular mechanisms that regulate these processes are incompletely understood. We previously identified an essential role of general control of amino acid synthesis 5 like 1 (GCN5L1) and the biogenesis of lysosome-related organelle complex 1 subunit 1 (BLOS1) in surfactant system development in zebrafish. Here, we explored the role of GCN5L1 in pulmonary surfactant regulation. METHOD GCN5L1 knockout cell lines were generated with the CRISPR/Cas9 system. Cell viability was analyzed by MTT assay. Released surfactant proteins were measured by ELISA. Released surfactant lipids were measured based on coupled enzymatic reactions. Gene overexpression was mediated through lentivirus. The RNA levels were detected through RNA-sequencing (RNA-seq) and quantitative reverse transcription (qRT)- polymerase chain reaction (PCR). The protein levels were detected through western blotting. The cellular localization was analyzed by immunofluorescence. Morphology of the lamellar body was analyzed through transmission electron microscopy (TEM), Lysotracker staining, and BODIPY phosphatidylcholine labeling. RESULTS Knocking out GCN5L1 in MLE-12 significantly decreased the release of surfactant proteins and lipids. We detected the downregulation of some surfactant-related genes and misregulation of the ROS-Erk-Foxo1-Cebpα axis in mutant cells. Modulating the activity of the axis or reconstructing the mitochondrial expression of GCN5L1 could partially restore the expression of these surfactant-related genes. We further showed that MLE-12 cells contained many LB-like organelles that were lipid enriched and positive for multiple LB markers. These organelles were smaller in size and accumulated in the absence of GCN5L1, indicating both biogenesis and trafficking defects. Accumulated endogenous surfactant protein (SP)-B or exogenously expressed SP-B/SP-C in adenosine triphosphate-binding cassette transporterA3 (ABCA3)-positive organelles was detected in mutant cells. GCN5L1 localized to the mitochondria and LBs. Reconstruction of mitochondrial GCN5L1 expression rescued the organelle morphology but failed to restore the trafficking defect and surfactant release, indicating specific roles associated with different subcellular localizations. CONCLUSIONS In summary, our study identified GCN5L1 as a new regulator of pulmonary surfactant that plays a role in the biogenesis and positioning/trafficking of surfactant-containing LBs.
Collapse
Affiliation(s)
- Wenqin Xu
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China
| | - Xiaocui Ma
- Henan Clinical Research Center of Childhood Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Qing Wang
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China
| | - Jingjing Ye
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China
| | - Nengqian Wang
- Department of Pediatrics, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zhenzhen Ye
- Department of Pediatrics, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Tianbing Chen
- Central Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu, China.
- Anhui Province Key Laboratory of Non-Coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, China.
- Clinical Research Center for Critical Respiratory Medicine of Anhui Province, Wannan Medical College, Wuhu, China.
| |
Collapse
|
5
|
Bugga P, Manning JR, Mushala BA, Stoner MW, Sembrat J, Scott I. GCN5L1-mediated acetylation prevents Rictor degradation in cardiac cells after hypoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564170. [PMID: 37961692 PMCID: PMC10634848 DOI: 10.1101/2023.10.26.564170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cardiomyocyte apoptosis and cardiac fibrosis are the leading causes of mortality in patients with ischemic heart disease. As such, these processes represent potential therapeutic targets to treat heart failure resulting from ischemic insult. We previously demonstrated that the mitochondrial acetyltransferase protein GCN5L1 regulates cardiomyocyte cytoprotective signaling in ischemia-reperfusion injury in vivo and hypoxia-reoxygenation injury in vitro. The current study investigated the mechanism underlying GCN5L1-mediated regulation of the Akt/mTORC2 cardioprotective signaling pathway. Rictor protein levels in cardiac tissues from human ischemic heart disease patients were significantly decreased relative to non-ischemic controls. Rictor protein levels were similarly decreased in cardiac AC16 cells following hypoxic stress, while mRNA levels remained unchanged. The reduction in Rictor protein levels after hypoxia was enhanced by the knockdown of GCN5L1, and was blocked by GCN5L1 overexpression. These findings correlated with changes in Rictor lysine acetylation, which were mediated by GCN5L1 acetyltransferase activity. Rictor degradation was regulated by proteasomal activity, which was antagonized by increased Rictor acetylation. Finally, we found that GCN5L1 knockdown restricted cytoprotective Akt signaling, in conjunction with decreased mTOR abundance and activity. In summary, these studies suggest that GCN5L1 promotes cardioprotective Akt/mTORC2 signaling by maintaining Rictor protein levels through enhanced lysine acetylation.
Collapse
Affiliation(s)
- Paramesha Bugga
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Janet R. Manning
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Bellina A.S. Mushala
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Michael W. Stoner
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Iain Scott
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15261
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
6
|
Wei T, Guo Y, Huang C, Sun M, Zhou B, Gao J, Shen W. Fibroblast-to-cardiomyocyte lactate shuttle modulates hypertensive cardiac remodelling. Cell Biosci 2023; 13:151. [PMID: 37580825 PMCID: PMC10426103 DOI: 10.1186/s13578-023-01098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Cardiac fibroblasts (CFs) and cardiomyocytes are the major cell populations in the heart. CFs not only support cardiomyocytes by producing extracellular matrix (ECM) but also assimilate myocardial nutrient metabolism. Recent studies suggest that the classical intercellular lactate shuttle may function in the heart, with lactate transported from CFs to cardiomyocytes. However, the underlying mechanisms regarding the generation and delivery of lactate from CFs to cardiomyocytes have yet to be explored. RESULTS In this study, we found that angiotensin II (Ang II) induced CFs differentiation into myofibroblasts that, driven by cell metabolism, then underwent a shift from oxidative phosphorylation to aerobic glycolysis. During this metabolic conversion, the expression of amino acid synthesis 5-like 1 (GCN5L1) was upregulated and bound to and acetylated mitochondrial pyruvate carrier 2 (MPC2) at lysine residue 19. Hyperacetylation of MPC2k19 disrupted mitochondrial pyruvate uptake and mitochondrial respiration. GCN5L1 ablation downregulated MPC2K19 acetylation, stimulated mitochondrial pyruvate metabolism, and inhibited glycolysis and lactate accumulation. In addition, myofibroblast-specific GCN5L1-knockout mice (GCN5L1fl/fl: Periostin-Cre) showed reduced myocardial hypertrophy and collagen content in the myocardium. Moreover, cardiomyocyte-specific monocarboxylate transporter 1 (MCT1)-knockout mice (MCT1fl/fl: Myh6-Cre) exhibited blocked shuttling of lactate from CFs to cardiomyocytes and attenuated Ang II-induced cardiac hypertrophy. CONCLUSIONS Our findings suggest that GCN5L1-MPC2 signalling pathway alters metabolic patterns, and blocking MCT1 interrupts the fibroblast-to-cardiomyocyte lactate shuttle, which may attenuate cardiac remodelling in hypertension.
Collapse
Affiliation(s)
- Tong Wei
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuetong Guo
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chenglin Huang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengwei Sun
- Key Laboratory of State General Administration of Sport, Shanghai Research Institute of Sports Science, Shanghai, 200030, China
| | - Bin Zhou
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weili Shen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Wu K, Zou J, Sack MN. The endo-lysosomal regulatory protein BLOC1S1 modulates hepatic lysosomal content and lysosomal lipolysis. Biochem Biophys Res Commun 2023; 642:1-10. [PMID: 36535215 PMCID: PMC9852072 DOI: 10.1016/j.bbrc.2022.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BLOC1S1 is a common component of BLOC and BORC multiprotein complexes which play distinct roles in endosome and lysosome biology. Recent human mutations in BLOC1S1 associate with juvenile leukodystrophy. As leukodystrophy is linked to perturbed lysosomal lipid storage we explored whether BLOC1S1 itself modulates this biology. Given the central role of the liver in lipid storage, our investigations were performed in hepatocyte specific liver bloc1s1 knockout (LKO) mice and in human hepatocyte-like lines (HLCs) derived from inducible pluripotential stem cells (iPSCs) from a juvenile leukodystrophy subject's with bloc1s1 mutations and from isogenic corrected iPSCs. Here we show that hepatocyte lipid stores are diminished in parallel with increased lysosomal content, increased lysosomal lipid uptake and lipolysis in LKO mice. The lysosomal lipolysis program was independent of macro- and chaperone-mediated lipophagy but dependent on cellular lysosome content. In parallel, genetic induction of lysosomal biogenesis in a transformed hepatocyte cell line replicated depletion of intracellular lipid stores. Interestingly bloc1s1 mutant and isogenic corrected HLCs both showed normal lysosomal enzyme activity. However, relative to the isogenic corrected HLCs, mutant bloc1s1 HLCs showed reduced lysosomal content and increased lipid storage. Together these data show distinct phenotypes in human mutant HLCs compared to murine knockout cells. At the same time, human blcs1s1 mutation and murine hepatocyte bloc1s1 depletion disrupt lysosome content and the cellular lipid storage. These data support that BLOC1S1 modulates lysosome content and lipid handling independent of autophagy and show that lysosomal lipolysis is dependent on the cellular content of functional lysosomes.
Collapse
Affiliation(s)
- Kaiyuan Wu
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA.
| | - Jizhong Zou
- Stem Cell Core Facility, NHLBI, NIH, Bethesda, MD, USA.
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
8
|
Thapa D, Bugga P, Mushala BAS, Manning JR, Stoner MW, McMahon B, Zeng X, Cantrell PS, Yates N, Xie B, Edmunds LR, Jurczak MJ, Scott I. GCN5L1 impairs diastolic function in mice exposed to a high fat diet by restricting cardiac pyruvate oxidation. Physiol Rep 2022; 10:e15415. [PMID: 35924321 PMCID: PMC9350469 DOI: 10.14814/phy2.15415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 04/15/2023] Open
Abstract
Left ventricular diastolic dysfunction is a structural and functional condition that precedes the development of heart failure with preserved ejection fraction (HFpEF). The etiology of diastolic dysfunction includes alterations in fuel substrate metabolism that negatively impact cardiac bioenergetics, and may precipitate the eventual transition to heart failure. To date, the molecular mechanisms that regulate early changes in fuel metabolism leading to diastolic dysfunction remain unclear. In this report, we use a diet-induced obesity model in aged mice to show that inhibitory lysine acetylation of the pyruvate dehydrogenase (PDH) complex promotes energetic deficits that may contribute to the development of diastolic dysfunction in mouse hearts. Cardiomyocyte-specific deletion of the mitochondrial lysine acetylation regulatory protein GCN5L1 prevented hyperacetylation of the PDH complex subunit PDHA1, allowing aged obese mice to continue using pyruvate as a bioenergetic substrate in the heart. Our findings suggest that changes in mitochondrial protein lysine acetylation represent a key metabolic component of diastolic dysfunction that precedes the development of heart failure.
Collapse
Affiliation(s)
- Dharendra Thapa
- Vascular Medicine InstitutePittsburghPennsylvaniaUSA
- Center for Metabolism and Mitochondrial Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
- Division of Exercise PhysiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
| | - Paramesha Bugga
- Vascular Medicine InstitutePittsburghPennsylvaniaUSA
- Center for Metabolism and Mitochondrial Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bellina A. S. Mushala
- Vascular Medicine InstitutePittsburghPennsylvaniaUSA
- Center for Metabolism and Mitochondrial Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Janet R. Manning
- Vascular Medicine InstitutePittsburghPennsylvaniaUSA
- Center for Metabolism and Mitochondrial Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Michael W. Stoner
- Vascular Medicine InstitutePittsburghPennsylvaniaUSA
- Center for Metabolism and Mitochondrial Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Xuemei Zeng
- Biomedical Mass Spectrometry Center, Schools of the Health SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Pamela S. Cantrell
- Biomedical Mass Spectrometry Center, Schools of the Health SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Nathan Yates
- Biomedical Mass Spectrometry Center, Schools of the Health SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bingxian Xie
- Center for Metabolism and Mitochondrial Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lia R. Edmunds
- Center for Metabolism and Mitochondrial Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Michael J. Jurczak
- Center for Metabolism and Mitochondrial Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Iain Scott
- Vascular Medicine InstitutePittsburghPennsylvaniaUSA
- Center for Metabolism and Mitochondrial Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
9
|
Liu C, Xu R. Dexmedetomidine protects H9C2 rat cardiomyocytes against hypoxia/reoxygenation injury by regulating the long non-coding RNA colon cancer-associated transcript 1/microRNA-8063/Wnt/β-catenin axis. Bioengineered 2022; 13:13300-13311. [PMID: 35635079 PMCID: PMC9275899 DOI: 10.1080/21655979.2022.2080420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dexmedetomidine (Dex) protects the heart from ischemia/reperfusion (I/R) injury. The differential expression of long non-coding RNAs (lncRNAs) is associated with myocardial injury, but whether the lncRNA colon cancer-associated transcript 1 (CCAT1) is associated with Dex-mediated myocardial protection remains unclear. In this study, a hypoxia/reoxygenation (H/R) H9C2 model was established to simulate the in vitro characteristics of I/R. CCAT1 and microRNA (miR)-8063 expression levels in H/R H9C2 cells pretreated with Dex were determined via quantitative reverse transcription-polymerase chain reaction. The survival and apoptotic rates of H9C2 cells were determined via cell counting kit-8 and flow cytometry assays. Wnt3a, Wnt5a, and β-catenin protein levels were measured via western blotting. Luciferase and RNA immunoprecipitation assays were used to explore the binding relationship between miR-8063 and CCAT1. Dex pretreatment increased H/R H9C2 cell viability and CCAT1 expression, while decreasing the cell apoptosis and Wnt3a, Wnt5a, and β-catenin protein levels. Knockdown of CCAT1 abolished the protective effects of Dex on H/R H9C2 cells, and the downregulation of miR-8063 expression eliminated the effect of CCAT1 knockdown. These results revealed that CCAT1, a sponge for miR-8063, is involved in Dex-mediated H9C2 cell H/R injury by negatively targeting miR-8063 and inactivating the Wnt/β-catenin pathway. Dex protects H9C2 cells from H/R impairment by regulating the lncRNA CCAT1/miR-8063/Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Chundong Liu
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Rui Xu
- Department of Anesthesiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
10
|
Manning JR, Thapa D, Zhang M, Stoner MW, Sembrat JC, Rojas M, Scott I. GPER-dependent estrogen signaling increases cardiac GCN5L1 expression. Am J Physiol Heart Circ Physiol 2022; 322:H762-H768. [PMID: 35245133 PMCID: PMC8977132 DOI: 10.1152/ajpheart.00024.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Reversible lysine acetylation regulates the activity of cardiac metabolic enzymes, including those controlling fuel substrate metabolism. Mitochondrial-targeted GCN5L1 and SIRT3 have been shown to regulate the acetylation status of mitochondrial enzymes, but the role that lysine acetylation plays in driving metabolic differences between male and female hearts is not currently known. In this study, we describe a significant difference in GCN5L1 levels between male and female mouse hearts, and in the hearts of women between post- and premenopausal age. We further find that estrogen drives GCN5L1 expression in a cardiac cell line and uses pharmacological approaches to determine the mechanism to be G protein-coupled estrogen receptor (GPER) activation, via translational regulation.NEW & NOTEWORTHY We demonstrate here for the first time that mitochondrial protein acetylation is increased in female hearts, associated with an increase in GCN5L1 levels through a GPER-dependent mechanism. These findings reveal a new potential mediator of divergent cardiac mitochondrial function between men and women.
Collapse
Affiliation(s)
- Janet R Manning
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dharendra Thapa
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Manling Zhang
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael W Stoner
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John C Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, Ohio
| | - Iain Scott
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Gao J, Feng W, Lv W, Liu W, Fu C. HIF-1/AKT Signaling-Activated PFKFB2 Alleviates Cardiac Dysfunction and Cardiomyocyte Apoptosis in Response to Hypoxia. Int Heart J 2021; 62:350-358. [PMID: 33678793 DOI: 10.1536/ihj.20-315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myocardial infarction (MI) is the most prevalent disease with severe mortality, and hypoxia-induced cardiac injury and cardiomyocyte apoptosis are the significant and harmful consequences of this disease. The cross talk between hypoxia signaling and glycolysis energy flux plays a critical role in modulating MI-related heart disorder. However, the underlying mechanism remains unclear. Here, we aimed to explore the effect of a key glycolytic enzyme of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 2 (PFKFB2) on cardiac dysfunction and apoptosis in response to hypoxia. Our data demonstrated that the mRNA and protein expression of PFKFB2 were significantly elevated in the MI mice. The MI treatment promoted the activation of PFKFB2 in vivo, as presented by the remarkably increased phosphorylation levels of PFKFB2. PFKFB2 depletion enhanced MI-induced cardiac dysfunction and cardiomyocyte apoptosis in the MI mouse model. Moreover, hypoxia treatment dramatically upregulated the expression and activation of PFKFB2 in a time-dependent manner in cardiomyocytes. Hypoxia-stimulated PFKFB2 relieved hypoxia-induced cardiomyocyte apoptosis in vitro. PFKFB2 activated the fructose-2, 6-bisphosphate (Fru-2, 6-p2) /PFK/anaerobic adenosine triphosphate (ATP) glycolysis energy flux in response to hypoxia in cardiomyocytes. Mechanically, hypoxia-activated PFKFB2 by stimulating the hypoxia-inducible factor 1 (HIF-1) /ATK signaling. Thus, we conclude that HIF-1/AKT axis-activated PFKFB2 alleviates cardiac dysfunction and cardiomyocyte apoptosis in response to hypoxia. Our finding presents a new insight into the mechanism by which HIF-1/AKT/PFKFB2 signaling modulates MI-related heart disorder under the hypoxia condition, providing potential therapeutic targets and strategy for hypoxia-related myocardial injury.
Collapse
Affiliation(s)
- Juanyu Gao
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University
| | - Wenjing Feng
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University
| | - Wei Lv
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University
| | - Wenhui Liu
- Department of Cardiology, The Second Hospital of Shandong University
| | - Caihua Fu
- Department of Cardiology, Central Hospital Affiliated to Shandong First Medical University
| |
Collapse
|
12
|
Abstract
Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.
Collapse
Affiliation(s)
- Angelia Szwed
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eugene Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
13
|
Wu K, Scott I, Wang L, Thapa D, Sack MN. The emerging roles of GCN5L1 in mitochondrial and vacuolar organelle biology. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194598. [PMID: 32599084 PMCID: PMC7762733 DOI: 10.1016/j.bbagrm.2020.194598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 02/06/2023]
Abstract
General control of amino acid synthesis 5 like 1 (GCN5L1) was named due to its loose sequence alignment to GCN5, a catalytic subunit of numerous histone N-acetyltransferase complexes. Further studies show that GCN5L1 has mitochondrial and cytosolic isoforms, although functional-domain sequence alignment and experimental studies show that GCN5L1 itself does not possess intrinsic acetyltransferase activity. Nevertheless, GCN5L1 does support protein acetylation in the mitochondria and cytosol and functions as a subunit of numerous intracellular multiprotein complexes that control intracellular vacuolar organelle positioning and function. The majority of GCN5L1 studies have focused on distinct intracellular functions and in this review, we summarize these findings as well as postulate what may be common features of the diverse phenotypes linked to GCN5L1.
Collapse
Affiliation(s)
- Kaiyuan Wu
- Cardiovascular Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Iain Scott
- Cardiology Division, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Lingdi Wang
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Dharendra Thapa
- Cardiology Division, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Michael N Sack
- Cardiovascular Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
McNally LA, Altamimi TR, Fulghum K, Hill BG. Considerations for using isolated cell systems to understand cardiac metabolism and biology. J Mol Cell Cardiol 2020; 153:26-41. [PMID: 33359038 DOI: 10.1016/j.yjmcc.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Changes in myocardial metabolic activity are fundamentally linked to cardiac health and remodeling. Primary cardiomyocytes, induced pluripotent stem cell-derived cardiomyocytes, and transformed cardiomyocyte cell lines are common models used to understand how (patho)physiological conditions or stimuli contribute to changes in cardiac metabolism. These cell models are helpful also for defining metabolic mechanisms of cardiac dysfunction and remodeling. Although technical advances have improved our capacity to measure cardiomyocyte metabolism, there is often heterogeneity in metabolic assay protocols and cell models, which could hinder data interpretation and discernment of the mechanisms of cardiac (patho)physiology. In this review, we discuss considerations for integrating cardiomyocyte cell models with techniques that have become relatively common in the field, such as respirometry and extracellular flux analysis. Furthermore, we provide overviews of metabolic assays that complement XF analyses and that provide information on not only catabolic pathway activity, but biosynthetic pathway activity and redox status as well. Cultivating a more widespread understanding of the advantages and limitations of metabolic measurements in cardiomyocyte cell models will continue to be essential for the development of coherent metabolic mechanisms of cardiac health and pathophysiology.
Collapse
Affiliation(s)
- Lindsey A McNally
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Tariq R Altamimi
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Kyle Fulghum
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Bradford G Hill
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
15
|
Shi X, Liu Z, Li J. Protective effects of dexmedetomidine on hypoxia/reoxygenation injury in cardiomyocytes by regulating the CHOP signaling pathway. Mol Med Rep 2020; 22:3307-3315. [PMID: 32945482 PMCID: PMC7453597 DOI: 10.3892/mmr.2020.11442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Hypoxia/reoxygenation (H/R) injury in myocardial cells occurs frequently during cardiac surgery and affects the prognosis of patients. The present study aimed to investigate the protective effects of dexmedetomidine (Dex) on H/R injury and its association with the C/EBP-homologous protein (CHOP) signaling pathway. An H/R model was constructed in H9C2 cells to investigate the effects of Dex on H/R injury. Cell viability, apoptosis and lactate dehydrogenase (LDH) levels were determined by MTT, flow cytometry and 2,4-dinitrophenylhydrazine colorimetric assays, respectively. The expression levels of inflammatory factors were measured by reverse transcription-quantitative PCR (RT-qPCR), and CHOP and glucose-regulated protein-78 (Grp78) expression levels were detected by RT-qPCR and western blotting. CHOP was overexpressed or knocked down to detect the cell viability, apoptosis, LDH level and the expression levels of inflammatory factors and Grp78. The results demonstrated that in the H/R group, cell viability was lower and apoptosis was higher, and that higher levels of LDH and inflammatory factors were present compared with those in the Dex+H/R group. Silencing of CHOP significantly reversed the H/R-reduced cell viability, high apoptotic rate and LDH levels, as well as the elevated expression levels of inflammatory factors and Grp78 caused by H/R injury, whereas the overexpression of CHOP inhibited cell viability and promoted apoptosis, elevated LDH level and expression of inflammatory factors and Grp78 compared with the negative control. Additionally, pretreatment with Dex significantly alleviated the H/R injury; thus, Dex may protect H9C2 cells against H/R induced cell injury, possibly by suppressing the CHOP signaling pathway.
Collapse
Affiliation(s)
- Xiaoqiao Shi
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhiwen Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Junwei Li
- Department of Anesthesiology, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
16
|
Cardiomyocyte-specific deletion of GCN5L1 in mice restricts mitochondrial protein hyperacetylation in response to a high fat diet. Sci Rep 2020; 10:10665. [PMID: 32606301 PMCID: PMC7326908 DOI: 10.1038/s41598-020-67812-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial lysine acetylation regulates several metabolic pathways in cardiac cells. The current study investigated whether GCN5L1-mediated lysine acetylation regulates cardiac mitochondrial metabolic proteins in response to a high fat diet (HFD). GCN5L1 cardiac-specific knockout (cKO) mice showed significantly reduced mitochondrial protein acetylation following a HFD relative to wildtype (WT) mice. GCN5L1 cKO mice did not display any decrease in ex vivo cardiac workload in response to a HFD. In contrast, ex vivo cardiac function in HFD-fed WT mice dropped ~ 50% relative to low fat diet (LFD) fed controls. The acetylation status of electron transport chain Complex I protein NDUFB8 was significantly increased in WT mice fed a HFD, but remained unchanged in GCN5L1 cKO mice relative to LFD controls. Finally, we observed that inhibitory acetylation of superoxide dismutase 2 (SOD2) at K122 was increased in WT (but not cKO mice) on a HFD. This correlated with significantly increased cardiac lipid peroxidation in HFD-fed WT mice relative to GCN5L1 cKO animals under the same conditions. We conclude that increased GCN5L1 expression in response to a HFD promotes increased lysine acetylation, and that this may play a role in the development of reactive oxygen species (ROS) damage caused by nutrient excess.
Collapse
|
17
|
Qi M, He L, Ma X, Li Z. MiR-181a-5p is involved in the cardiomyocytes apoptosis induced by hypoxia-reoxygenation through regulating SIRT1. Biosci Biotechnol Biochem 2020; 84:1353-1361. [PMID: 32290769 DOI: 10.1080/09168451.2020.1750943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MiR-181a-5p's mechanism in hypoxia-reoxygenation (H/R)-induced cardiomyocytes apoptosis has not been clarified. This study verified that SIRT1 was the target of miR-181a-5p. MiR-181a-5p expression was up-regulated or down-regulated in H/R-induced cardiomyocytes, and SIRT1 was transfected into cells alone or in combination with miR-181a-5p. Cell viability, apoptosis, levels of released lactate dehydrogenase (LDH), malondialdehyde (MDA), and superoxide dismutase (SOD), as well as the Bcl-2, Bax, and Caspase 3 levels in treated cells were tested. On the one hand, down-regulated miR-181a-5p promoted cell viability, reduced released LDH and MDA, and increased SOD level in H/R-induced cardiomyocytes. On the other hand, miR-181a-5p inhibited apoptosis and elevated Bcl-2 expression while decreasing the expressions of Bax and Caspase 3 in treated cells, but the effects of miR-181a-5p could be rescued by SIRT1. In conclusion, miR-181a-5p involved in H/R-induced cardiomyocytes apoptosis through regulating SIRT1, which might become a novel direction for related diseases.
Collapse
Affiliation(s)
- Mingxu Qi
- Department of Cardiovascular Medicine, Affiliated Nanhua Hospital, University of South China , Hengyang, Hunan, China
| | - Li He
- Department of Psychiatry, Hengyang Second People's Hospital , Hengyang, Hunan, China
| | - Xiaofeng Ma
- Department of Cardiovascular Medicine, Affiliated Nanhua Hospital, University of South China , Hengyang, Hunan, China
| | - Zili Li
- Department of Cardiovascular Medicine, Affiliated Nanhua Hospital, University of South China , Hengyang, Hunan, China
| |
Collapse
|
18
|
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 2020; 23:299-314. [PMID: 32246225 DOI: 10.1007/s10456-020-09720-2] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
As reperfusion therapies have become more widely used in acute myocardial infarction patients, ischemia-induced myocardial damage has been markedly reduced, but reperfusion-induced cardiac injury has become increasingly evident. The features of cardiac ischemia-reperfusion (I/R) injury include microvascular perfusion defects, platelet activation and sequential cardiomyocyte death due to additional ischemic events at the reperfusion stage. Microvascular obstruction, defined as a no-reflow phenomenon, determines the infarct zone, myocardial function and peri-operative mortality. Cardiac microvascular endothelial cell injury may occur much earlier and with much greater severity than cardiomyocyte injury. Endothelial cells contain fewer mitochondria than other cardiac cells, and several of the pathological alterations during cardiac microvascular I/R injury involve mitochondria, such as increased mitochondrial reactive oxygen species (mROS) levels and disturbed mitochondrial dynamics. Although mROS are necessary physiological second messengers, high mROS levels induce oxidative stress, endothelial senescence and apoptosis. Mitochondrial dynamics, including fission, fusion and mitophagy, determine the shape, distribution, size and function of mitochondria. These adaptive responses modify extracellular signals and orchestrate intracellular processes such as cell proliferation, migration, metabolism, angiogenesis, permeability transition, adhesive molecule expression, endothelial barrier function and anticoagulation. In this review, we discuss the involvement of mROS and mitochondrial morphofunction in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China. .,Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
19
|
Stoner MW, McTiernan CF, Scott I, Manning JR. Calreticulin expression in human cardiac myocytes induces ER stress-associated apoptosis. Physiol Rep 2020; 8:e14400. [PMID: 32323496 PMCID: PMC7177173 DOI: 10.14814/phy2.14400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
The global burden of heart failure following myocardial ischemia-reperfusion (IR) injury is a growing problem. One pathway that is key to understanding the progression of myocardial infarction and IR injury is the endoplasmic reticulum (ER) stress pathway, which contributes to apoptosis signaling and tissue death. The role of calreticulin in the progression of ER stress remains controversial. We hypothesized that calreticulin induction drives proapoptotic signaling in response to ER stress. We find here that calreticulin is upregulated in human ischemic heart failure cardiac tissue, as well as simulated hypoxia and reoxygenation (H/R) and thapsigargin-mediated ER stress. To test the impact of direct modulation of calreticulin expression on ER stress-induced apoptosis, human cardiac-derived AC16 cells with stable overexpression or silencing of calreticulin were subjected to thapsigargin treatment, and markers of apoptosis were evaluated. It was found that overexpression of calreticulin promotes apoptosis, while a partial knockdown protects against the expression of caspase 12, CHOP, and reduces thapsigargin-driven TUNEL staining. These data shed light on the role that calreticulin plays in apoptosis signaling during ER stress in cardiac cells.
Collapse
Affiliation(s)
- Michael W. Stoner
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| | - Charles F. McTiernan
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| | - Iain Scott
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| | - Janet R. Manning
- Division of CardiologyDepartment of MedicineUniversity of PittsburghPittsburghPAUSA
- Department of MedicineVascular Medicine InstituteUniversity of PittsburghPittsburghPAUSA
- Department of MedicineCenter for Metabolism and Mitochondrial MedicineUniversity of PittsburghPAUSA
| |
Collapse
|
20
|
Lu S, Wu D, Sun G, Geng F, Shen Y, Tan J, Sun X, Luo Y. Gastroprotective effects of Kangfuxin against water-immersion and restraint stress-induced gastric ulcer in rats: roles of antioxidation, anti-inflammation, and pro-survival. PHARMACEUTICAL BIOLOGY 2019; 57:770-777. [PMID: 31696757 PMCID: PMC6844415 DOI: 10.1080/13880209.2019.1682620] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Context: Kangfuxin (KFX) is widely used for the treatment of gastric and duodenal ulcer; however, more research is needed to determine the protective mechanisms of KFX in ameliorating gastric ulcer.Objective: To investigate the efficacy and potential mechanism of Kangfuxin liquid (KFX) in water-immersion and restraint stress (WIRS)-induced gastric ulcer.Materials and methods: Seventy rats were randomly divided into seven groups (n = 10) as follows: the control group (normal saline, i.g.), the model group (normal saline, i.g.), the KFX groups (2.5, 5 and 10 mL/kg, i.g.), the omeprazole group (20 mg/kg, i.p.) and Sanjiuweitai Granules group (1850 mg/kg, i.g.). The WIRS model was applied to induce stress ulcers after 7 days of drug administration. Afterwards, rats were sacrificed at 10 h induced by WIRS.Results: Pre-treatment with KFX (5,10 mL/kg) could effectively reduce the area of gastric ulcers and improve the pathological changes of ulcerated tissue. Moreover, KFX (5,10 mL/kg) increased the prostaglandin E2 (52%) and cyclooxygenase-1 (30%) levels, and improved malondialdehyde (54%), superoxide dismutase (58%), catalase (39%), and nitric oxide (11%) and TNF-α (9%), IL-6 (11%), MMP-9 (54%) and MMP-2 (53%) of ulcer tissue. Furthermore, pre-treatment with KFX dramatically increased IGF-1, PTEN, and Akt protein expression.Conclusions: Our results suggest that KFX has protective effects on WIRS-induced gastric ulcer via inflammatory reactions, oxidative stress inhibition, and pro-survival action, which were the results of activating the IGF-1/PTEN/Akt signalling pathway. Our results provide evidence of KFX for treating gastric ulcer.
Collapse
Affiliation(s)
- Shan Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Daoshun Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Guibo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
| | - Funeng Geng
- Sichuan Good Doctor Panxi Pharmaceutical Co., LTD., Xichang, China
| | - Yongmei Shen
- Sichuan Good Doctor Panxi Pharmaceutical Co., LTD., Xichang, China
| | - Jin Tan
- Sichuan Good Doctor Panxi Pharmaceutical Co., LTD., Xichang, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Xiaobo Sun Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- CONTACT Yun Luo
| |
Collapse
|