1
|
Gong Y, Xue Q, Li J, Zhang S. Antifungal peptides from living organisms. Front Microbiol 2024; 15:1511461. [PMID: 39741586 PMCID: PMC11685209 DOI: 10.3389/fmicb.2024.1511461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
In the post-COVID-19 era, people are increasingly concerned about microbial infections, including fungal infections that have risen in recent years. However, the currently available antifungal agents are rather limited. Worse still, the widespread use of the antifungal agents has caused the emergence of antifungal resistance in Candida, Cryptococcus, and Aspergillus species. Therefore, the development of novel antifungals is urgently needed. Antimicrobial peptides (AMPs), as components of the first-line defense of the host, are found to exhibit broad antimicrobial activity against bacteria, fungi, parasites, viruses, and protozoa. AMPs with antifungal activity are specifically referred to as antifungal peptides (AFPs). AFPs are currently regarded as the most promising alternative to conventional antifungal agents due to the fact that they are highly selective and less prone to facilitate the selection of drug resistance. In this review, we present an overview of the origin and classification of natural AFPs as well as their modes of action. Additionally, the production of natural, semisynthetic, and synthetic AFPs with a view to greater levels of exploitation is discussed. Finally, we evaluate the current and potential applications of AFPs in clinics and in the food industry.
Collapse
Affiliation(s)
- Yi Gong
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Qunhang Xue
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jun Li
- Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Shicui Zhang
- Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, China
- Department of Marine Biology, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
2
|
Gao N, Fang C, Bai P, Wang J, Dong N, Shan A, Zhang L. De novo design of Na +-activated lipopeptides with selective antifungal activity: A promising strategy for antifungal drug discovery. Int J Biol Macromol 2024; 283:137894. [PMID: 39571872 DOI: 10.1016/j.ijbiomac.2024.137894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
In recent years, invasive fungal infections have posed a significant threat to human health, particularly due to the limited availability of effective antifungal medications. This study responds to the urgent need for powerful and selective antifungal agents by designing and synthesizing a series of lipopeptides with lipoylation at the N-terminus of the antimicrobial peptide I6. Compared to the parent peptide I6, lipopeptides exhibited selective antifungal efficacy in the presence of Na+. Among the variants tested, C8-I6 emerged as the most effective, with an average effective concentration of 5.3 μM against 12 different fungal species. C8-I6 combated fungal infections by disrupting both cytoplasmic and mitochondrial membranes, impairing the proton motive force, generating reactive oxygen species, and triggering apoptosis in fungal cells. Importantly, C8-I6 exhibited minimal hemolysis and cytotoxicity while effectively inhibiting fungal biofilm formation. In vivo experiments further validated the safety and therapeutic potential of C8-I6 in treating fungal skin infections. These findings underscore the significance of lipoylation in enhancing the efficacy of antimicrobial peptides, positioning C8-I6 as a promising candidate in fighting against drug-resistant fungal infections.
Collapse
Affiliation(s)
- Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Chunyang Fang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| | - Licong Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
3
|
Zou K, Yin K, Ren S, Zhang R, Zhang L, Zhao Y, Li R. Activity and mechanism of action of antimicrobial peptide ACPs against Candida albicans. Life Sci 2024; 350:122767. [PMID: 38843993 DOI: 10.1016/j.lfs.2024.122767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/01/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
AIMS Candida albicans is the most prevalent pathogenic fungus, exhibiting escalating multidrug resistance (MDR). Antimicrobial peptides (AMPs) represent promising candidates for addressing this issue. In this research, five antimicrobial peptides, ACP1 to ACP5 which named ACPs were studied as alternative fungicidal molecules. MAIN METHODS CD assay was used to analyze the 2D structures, Absorbance method was used to test the antimicrobial activity, haemolytic activity, time-kill kinetics, biofilm inhibition and reduction activity, resistance induction activity and assessment against fluconazole-resistant C. albicans. SEM, TEM, CLSM, flow cytometer and FM were carried out to provide insight into the mechanisms of anti-Candida action. KEY FINDINGS ACPs possessed an α-helical structure and strong anti-Candida activities, with minimum inhibitory concentrations (MICs) from 3.9 to 15.6 μg/mL. In addition, ACPs did not produce hemolysis at concentrations lower than 10 or 62 × MIC, indicating their low cytotoxicity. Fungicidal kinetics showed that they completely killed C. albicans within 8 h at 2 to 4 × MIC. Notably, ACPs were highly fungicidal against fluconazole-resistant C. albicans and showed low resistance. In addition, they were effective in inhibiting mycelium and biofilm formation. Fluorescence microscopy revealed that while fluconazole had minimal to no inhibitory effect on biofilm-forming cells, ACPs induced apoptosis in all of them. The research on mechanism of action revealed that ACPs disrupted the cell membranes, with ROS increasing and cellular mitochondrial membrane potential decreasing. SIGNIFICANCE ACPs could be promising candidates for combating fluconazole-resistant C. albicans infections.
Collapse
Affiliation(s)
- Kuiming Zou
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Kedong Yin
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Information Science and Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Shiming Ren
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Ruiling Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Economics and Trade, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Lan Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Yingyuan Zhao
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Ruifang Li
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| |
Collapse
|
4
|
Zou K, Zhang S, Yin K, Ren S, Zhang M, Li X, Fan L, Zhang R, Li R. Studies on the in vitro mechanism and in vivo therapeutic effect of the antimicrobial peptide ACP5 against Trichophyton mentagrophytes. Peptides 2024; 175:171177. [PMID: 38354953 DOI: 10.1016/j.peptides.2024.171177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
Trichophyton mentagrophytes is a zoophilic dermatophyte that can cause dermatophytosis in humans and animals. Antimicrobial peptides (AMPs) are considered as a promising agent to overcome the drug-resistance of T. mentagrophytes. Our findings suggest that cationic antimicrobial peptide (ACP5) not only possesses stronger activity against T. mentagrophytes than fluconazole, but also shows lower toxicity to L929 mouse fibroblast cells than terbinafine. Notably, its resistance development rate after resistance induction was lower than terbinafine. The present study aimed to evaluate the fungicidal mechanism of ACP5 in vitro and its potential to treat dermatophyte infections in vivo. ACP5 at 1 ×MIC completely inhibited T. mentagrophytes spore germination in vitro. ACP5 severely disrupts the mycelial morphology, leading to mycelial rupture. Mechanistically, ACP5 induces excessive ROS production, damaging the integrity of the cell membrane and decreasing the mitochondrial membrane potential, causing irreversible damage in T. mentagrophytes. Furthermore, 1% ACP5 showed similar efficacy to the commercially available drug 1% terbinafine in a guinea pig dermatophytosis model, and the complete eradication of T. mentagrophytes from the skin by ACP5 was verified by tissue section observation. These results indicate that ACP5 is a promising candidate for the development of new agent to combat dermatophyte resistance.
Collapse
Affiliation(s)
- Kuiming Zou
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Shaojie Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Kedong Yin
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Information Science and Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Shiming Ren
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Mengjun Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Xiatong Li
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Lixin Fan
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China
| | - Ruiling Zhang
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; School of Economics and Trade, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| | - Ruifang Li
- Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou, Henan University of Technology, 450001 Zhengzhou, Henan, PR China; College of Biological Engineering, Henan University of Technology, 450001 Zhengzhou, Henan, PR China.
| |
Collapse
|
5
|
Ramesh S, Roy U, Roy S, Rudramurthy SM. A promising antifungal lipopeptide from Bacillus subtilis: its characterization and insight into the mode of action. Appl Microbiol Biotechnol 2024; 108:161. [PMID: 38252130 DOI: 10.1007/s00253-023-12976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/23/2024]
Abstract
Emerging resistance of fungal pathogens and challenges faced in drug development have prompted renewed investigations into novel antifungal lipopeptides. The antifungal lipopeptide AF3 reported here is a natural lipopeptide isolated and purified from Bacillus subtilis. The AF3 lipopeptide's secondary structure, functional groups, and the presence of amino acid residues typical of lipopeptides were determined by circular dichroism, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. The lipopeptide's low minimum inhibitory concentrations (MICs) of 4-8 mg/L against several fungal strains demonstrate its strong antifungal activity. Biocompatibility assays showed that ~ 80% of mammalian cells remained viable at a 2 × MIC concentration of AF3. The treated Candida albicans cells examined by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy clearly showed ultrastructural alterations such as the loss of the cell shape and cell membrane integrity. The antifungal effect of AF3 resulted in membrane permeabilization facilitating the uptake of the fluorescent dyes-acridine orange (AO)/propidium iodide (PI) and FUN-1. Using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 4-(2-[6-(dioctylamino)-2-naphthalenyl] ethenyl)-1-(3-sulfopropyl) pyridinium inner salt (di-8-ANEPPS), we observed that the binding of AF3 to the membrane bilayer results in membrane disruption and depolarization. Flow cytometry analyses revealed a direct correlation between lipopeptide activity, membrane permeabilization (~ 75% PI uptake), and reduced cell viability. An increase in 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence demonstrates endogenous reactive oxygen species production. Lipopeptide treatment appears to induce late-stage apoptosis and alterations to nuclear morphology, suggesting that AF3-induced membrane damage may lead to a cellular stress response. Taken together, this study illustrates antifungal lipopeptide's potential as an antifungal drug candidate. KEY POINTS: • The studied lipopeptide variant AF3 displayed potent antifungal activity against C. albicans • Its biological activity was stable to proteolysis • Analytical studies demonstrated that the lipopeptide is essentially membranotropic and able to cause membrane dysfunction, elevated ROS levels, apoptosis, and DNA damage.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India.
| | - Subhasish Roy
- Department of Chemistry, BITS Pilani K.K. Birla Goa Campus, NH 17B Bypass Road, Sancoale, Goa, 403726, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
6
|
Ding L, Tao X, Zhou J. Effect of a comprehensive geriatric assessment-based individualized intervention on postoperative patients with cerebral hemorrhage: A randomized controlled study. Technol Health Care 2024; 32:1555-1567. [PMID: 38073343 DOI: 10.3233/thc-230611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND Comprehensive geriatric assessment (CGA) has been used in inpatient, outpatient, and emergency patients in Western countries and is an important evaluation tool in medicine. In China, the application of CGA to multiple single diseases has achieved satisfactory intervention effects. OBJECTIVE To explore the effect of CGA on postoperative quality of life (QoL), psychological state, neurological recovery, and self-efficacy in patients with cerebral hemorrhage. METHODS In this randomized controlled trial, a total of 133 postoperative patients with cerebral hemorrhage who were treated and nursed in our hospital between March 2019 and March 2021 were randomly assigned to a control group (68 patients) and an observation group (65 patients). The control group was given a general comprehensive care intervention. The observation group was evaluated using an electronic medical record-based CGA system that assessed patient prognosis and was given individualized interventions based on the CGA findings. The postoperative QoL, psychological state, neurological recovery, and self-efficacy of the two groups were compared. RESULTS After the intervention, self-decompression, self-decision-making, and positive attitudes of the observation group were higher than those of the control group. However, the National Institute of Health Stroke Scale score of the observation group was lower than that of the control group, the Self-rating anxiety scale and self-rating depression scale scores of the observation group were lower than those of the control group, and the social support score was significantly higher in the observation group than in the control group. After the intervention, the mental vitality, social interaction, emotional restriction, and mental status scores of the observation group were significantly higher than those of the control group. CONCLUSION Comprehensive evaluation of patients with cerebral hemorrhage based on a CGA, targeting the individual factors that affect the prognosis of patients, and formulating and implementing individualized nursing intervention programs based on the CGA results can effectively relieve the symptoms of cerebral hemorrhage, reduce anxiety and depression, and improve the QoL of patients with cerebral hemorrhage.
Collapse
Affiliation(s)
- Ling Ding
- Department of Neurology, Liyuan Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Neurology, Liyuan Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinyan Tao
- VIP Ward, Hubei Cancer Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Neurology, Liyuan Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingjing Zhou
- Department of Neurology, Liyuan Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Ramesh S, Roy U, Roy S. The elucidation of the multimodal action of the investigational anti- Candida lipopeptide (AF 4) lead from Bacillus subtilis. Front Mol Biosci 2023; 10:1248444. [PMID: 38131013 PMCID: PMC10736182 DOI: 10.3389/fmolb.2023.1248444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/11/2023] [Indexed: 12/23/2023] Open
Abstract
Background: Candida species are the main etiological agents for candidiasis, and Candida albicans are the most common infectious species. Candida species' growing resistance to conventional therapies necessitates more research into novel antifungal agents. Antifungal peptides isolated from microorganisms have potential applications as novel therapeutics. AF4 a Bacillus-derived lipopeptide demonstrating broad-spectrum antifungal activity has been investigated for its ability to cause cell death in Candida species via membrane damage and oxidative stress. Methods: Using biophysical techniques, the secondary structure of the AF4 lipopeptide was identified. Scanning electron microscopy and confocal microscopy with fluorescent dyes were performed to visualise the effect of the lipopeptide. The membrane disruption and permeabilization were assessed using the 1,6-diphenyl hexatriene (DPH) fluorescence assay and flow cytometric (FC) assessment of propidium iodide (PI) uptake, respectively. The reactive oxygen species levels were estimated using the FC assessment. The induction of apoptosis and DNA damage were studied using Annexin V-FITC/PI and DAPI. Results: Bacillus-derived antifungal variant AF4 was found to have structural features typical of lipopeptides. Microscopy imaging revealed that AF4 damages the surface of treated cells and results in membrane permeabilization, facilitating the uptake of the fluorescent dyes. A loss of membrane integrity was observed in cells treated with AF4 due to a decrease in DPH fluorescence and a dose-dependent increase in PI uptake. Cell damage was also determined from the log reduction of viable cells treated with AF4. AF4 treatment also caused elevated ROS levels, induced phosphatidylserine externalisation, late-stage apoptosis, and alterations to nuclear morphology revealed by DAPI fluorescence. Conclusion: Collectively, the mode of action studies revealed that AF4 acts primarily on the cell membrane of C. albicans and has the potential to act as an antifungal drug candidate.
Collapse
Affiliation(s)
- Swetha Ramesh
- Department of Biological Sciences, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| | - Utpal Roy
- Department of Chemistry, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| | - Subhashis Roy
- Department of Chemistry, Birla Institute of Technology and Science, K.K. Birla Goa Campus, Goa, India
| |
Collapse
|
8
|
Li R, Wang X, Yin K, Xu Q, Ren S, Wang X, Wang Z, Yi Y. Fatty acid modification of antimicrobial peptide CGA-N9 and the combats against Candida albicans infection. Biochem Pharmacol 2023; 211:115535. [PMID: 37019190 DOI: 10.1016/j.bcp.2023.115535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
High-efficiency and low-toxic antimicrobial peptides (AMPs) are supposed to be the future candidates to solve the increasingly prominent problems of Candida albicans infection and drug resistance. Generally, introduction of hydrophobic moieties on AMPs resulted in analogues with remarkably increased activity against pathogens. CGA-N9, an antifungal peptide found in our lab, is a Candida-selective antimicrobial peptide capable of preferentially killing Candida spp. relative to benign microorganisms with low toxicities. We speculate that fatty acid modification could improve the anti-Candida activity of CGA-N9. In the present investigation, a set of CGA-N9 analogues with fatty acid conjugations at N-terminus were obtained. The biological activities of CGA-N9 analogues were determined. The results showed that the n-octanoic acid conjugation of CGA-N9 (CGA-N9-C8) was the optimal CGA-N9 analogue with the highest anti-Candida activity and biosafety; exhibited the strongest biofilm inhibition activity and biofilm eradication ability; and the highest stability against protease hydrolysis in serum. Furthermore, CGA-N9-C8 is less prone to develop resistance for C. albicans in reference with fluconazole; CGA-N9-C8 also exhibited Candidacidal activity to the planktonic cells and the persister cells of C. albicans; reduced C. albicans susceptibility in a systemic candidiasis mouse model. In conclusion, fatty acid modification is an effective method to enhance the antimicrobial activity of CGA-N9, and CGA-N9-C8 is a promising candidate to defend C. albicans infection and resolve C. albicans drug resistance.
Collapse
|
9
|
Guevara-Lora I, Bras G, Juszczak M, Karkowska-Kuleta J, Gorecki A, Manrique-Moreno M, Dymek J, Pyza E, Kozik A, Rapala-Kozik M. Cecropin D-derived synthetic peptides in the fight against Candida albicans cell filamentation and biofilm formation. Front Microbiol 2023; 13:1045984. [PMID: 36713201 PMCID: PMC9880178 DOI: 10.3389/fmicb.2022.1045984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
The recent progressive increase in the incidence of invasive fungal infections, especially in immunocompromised patients, makes the search for new therapies crucial in the face of the growing drug resistance of prevalent nosocomial yeast strains. The latest research focuses on the active compounds of natural origin, inhibiting fungal growth, and preventing the formation of fungal biofilms. Antimicrobial peptides are currently the subject of numerous studies concerning effective antifungal therapy. In the present study, the antifungal properties of two synthetic peptides (ΔM3, ΔM4) derived from an insect antimicrobial peptide - cecropin D - were investigated. The fungicidal activity of both compounds was demonstrated against the yeast forms of Candida albicans, Candida tropicalis, and Candida parapsilosis, reaching a MFC99.9 in the micromolar range, while Candida glabrata showed greater resistance to these peptides. The scanning electron microscopy revealed a destabilization of the yeast cell walls upon treatment with both peptides; however, their effectiveness was strongly modified by the presence of salt or plasma in the yeast environment. The transition of C. albicans cells from yeast to filamentous form, as well as the formation of biofilms, was effectively reduced by ΔM4. Mature biofilm viability was inhibited by a higher concentration of this peptide and was accompanied by increased ROS production, activation of the GPX3 and SOD5 genes, and finally, increased membrane permeability. Furthermore, both peptides showed a synergistic effect with caspofungin in inhibiting the metabolic activity of C. albicans cells, and an additive effect was also observed for the mixtures of peptides with amphotericin B. The results indicate the possible potential of the tested peptides in the prevention and treatment of candidiasis.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Juszczak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Gorecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin, Colombia
| | - Jakub Dymek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,*Correspondence: Maria Rapala-Kozik,
| |
Collapse
|
10
|
Sasidharan S, Nishanth KS, Nair HJ. Ethanolic extract of Caesalpinia bonduc seeds triggers yeast metacaspase-dependent apoptotic pathway mediated by mitochondrial dysfunction through enhanced production of calcium and reactive oxygen species (ROS) in Candida albicans. Front Cell Infect Microbiol 2022; 12:970688. [PMID: 36093184 PMCID: PMC9449877 DOI: 10.3389/fcimb.2022.970688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is a widespread disease-causing yeast affecting humankind, which leads to urinary tract, cutaneous and various lethal systemic infections. As this infection rate steadily increases, it is becoming a significant public health problem. Recently, Caesalpinia bonduc has received much attention from researchers due to its diverse pharmacological properties, including antimicrobial effects. Accordingly, we first planned to explore the in-vitro anticandidal potential of three extracts obtained from C. bonduc seeds against four Candida species. Initially, the anticandidal activity of the seed extracts was checked by the microdilution technique. Out of three seed extracts tested, ethanolic extract of C. bonduc seed (EECS) recorded the best activity against C. albicans. Hence, we next aimed to find out the anticandidal mechanism of EECS in C. albicans. The liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) analysis showed that the major compounds present in the EECS were tocopherols, fucosterol, linoleic acid, β-amyrin, β-sitosterol, campesterol, cassane furanoditerpene, Norcassane furanoditerpene and other diterpenes. To evaluate the cell death mechanism in C. albicans, a series of parameters related to apoptosis, viz., reactive oxygen species (ROS) production, membrane permeability, mitochondrial membrane potential, release of cytochrome c, DNA fragmentation, nuclear condensation, increased Ca2+ level in cytosolic and mitochondrial and activation of metacaspase, were analyzed. The results showed that EECS treatment resulted in the elevation of ROS, which leads to plasma membrane permeability in C. albicans. Annexin V staining further confirms the early stage of apoptosis through phosphatidylserine (PS) externalization. We further inspected the late apoptotic stage using DAPI and TUNEL staining assays. From the results, it can be concluded that EECS triggered mitochondrial dysfunction by releasing high levels of ROS, cytochrome c and Ca2+resulting in the activation of metacaspase mediated apoptosis, which is the central mechanism behind the cell death of C. albicans. Finally, a Galleria mellonella-C. albicans infection system was employed to assess the in-vivo potential of EECS. The outcomes displayed that the EECS considerably enhanced the recovery rate of G. mellonella larvae from infection after the treatment. Additionally, EECS also recorded low hemolytic activity. This study thus spotlights the anticandidal potential and mechanism of action of EECS against C. albicans and thus delivers a promising treatment approach to manage C. albicans infection in the future.
Collapse
|
11
|
Li R, Qiao M, Li S, Wei A, Ren S, Tao M, Zhao Y, Zhang L, Huang L, Shen Y. Antifungal Peptide CGA-N9 Protects Against Systemic Candidiasis in Mice. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Wang Z, Sun Q, Zhang H, Wang J, Fu Q, Qiao H, Wang Q. Insight into antibacterial mechanism of polysaccharides: A review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Huang L, Li R, Wang X, Zhang L, Zhang B. Preparation and Characterization of Nanoliposomes Loaded with the Antimicrobial Peptide CGA-N9. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10286-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Inhibitory mechanism of cell-free supernatants of Lactobacillus plantarum on Proteus mirabilis and influence of the expression of histamine synthesis-related genes. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Zhang Y, Li T, Xu M, Guo J, Zhang C, Feng Z, Peng X, Li Z, Xing K, Qin S. Antifungal effect of volatile organic compounds produced by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 on oxidative stress and mitochondrial dysfunction of Ceratocystis fimbriata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104777. [PMID: 33771256 DOI: 10.1016/j.pestbp.2021.104777] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 05/27/2023]
Abstract
Ceratocystis fimbriata is the pathogen of black rot disease, which widely exists in sweet potato producing areas all over the world. The antifungal activity of volatile organic compounds (VOCs) released by Pseudomonas chlororaphis subsp. aureofaciens SPS-41 against C. fimbriata was reported in our previous study. In this study, we attempted to reveal the underlying antifungal mechanism of SPS-41 volatiles. Our results showed that the VOCs released by SPS-41 caused the morphological change of hyphae, destroyed the integrity of cell membrane, reduced the content of ergosterol, and induced massive accumulation of reactive oxygen species in C. fimbriata cells. Furthermore, SPS-41 fumigation decreased the mitochondrial membrane potential, acetyl-CoA and pyruvate content of C. fimbriata cells, as well as the mitochondrial dehydrogenases activity. In addition, the VOCs generated by SPS-41 reduced the intracellular ATP content and increased the extracellular ATP content of C. fimbriata. In summary, SPS-41 fumigation exerted its antifungal activity by inducing oxidative stress and mitochondrial dysfunction in C. fimbriata.
Collapse
Affiliation(s)
- Yu Zhang
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Tengjie Li
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Mingjie Xu
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Jianheng Guo
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Chunmei Zhang
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Zhaozhong Feng
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Xue Peng
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Zongyun Li
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| | - Ke Xing
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China.
| | - Sheng Qin
- School of Life Science, the Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou 221116, Jiangsu, PR China
| |
Collapse
|
16
|
Alexander AJT, Muñoz A, Marcos JF, Read ND. Calcium homeostasis plays important roles in the internalization and activities of the small synthetic antifungal peptide PAF26. Mol Microbiol 2020; 114:521-535. [PMID: 32898933 DOI: 10.1111/mmi.14532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/01/2020] [Accepted: 05/17/2020] [Indexed: 01/22/2023]
Abstract
Fungal diseases are responsible for the deaths of over 1.5 million people worldwide annually. Antifungal peptides represent a useful source of antifungals with novel mechanisms-of-action, and potentially provide new methods of overcoming resistance. Here we investigate the mode-of-action of the small, rationally designed synthetic antifungal peptide PAF26 using the model fungus Neurospora crassa. Here we show that the cell killing activity of PAF26 is dependent on extracellular Ca2+ and the presence of fully functioning fungal Ca2+ homeostatic/signaling machinery. In a screen of mutants with deletions in Ca2+ -signaling machinery, we identified three mutants more tolerant to PAF26. The Ca2+ ATPase NCA-2 was found to be involved in the initial interaction of PAF26 with the cell envelope. The vacuolar Ca2+ channel YVC-1 was shown to be essential for its accumulation and concentration within the vacuolar system. The Ca2+ channel CCH-1 was found to be required to prevent the translocation of PAF26 across the plasma membrane. In the wild type, Ca2+ removal from the medium resulted in the peptide remaining trapped in small vesicles as in the Δyvc-1 mutant. It is, therefore, apparent that cell killing by PAF26 is complex and unusually dependent on extracellular Ca2+ and components of the Ca2+ -regulatory machinery.
Collapse
Affiliation(s)
- Akira J T Alexander
- Institute of Infection, Immunity & Inflammation, The University of Glasgow, Glasgow, Scotland
| | - Alberto Muñoz
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jose F Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA) , Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Nick D Read
- Manchester Fungal Infection Group, Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
17
|
Holzknecht J, Kühbacher A, Papp C, Farkas A, Váradi G, Marcos JF, Manzanares P, Tóth GK, Galgóczy L, Marx F. The Penicillium chrysogenum Q176 Antimicrobial Protein PAFC Effectively Inhibits the Growth of the Opportunistic Human Pathogen Candida albicans. J Fungi (Basel) 2020; 6:jof6030141. [PMID: 32824977 PMCID: PMC7557831 DOI: 10.3390/jof6030141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Small, cysteine-rich and cationic antimicrobial proteins (AMPs) from filamentous ascomycetes promise treatment alternatives to licensed antifungal drugs. In this study, we characterized the Penicillium chrysogenum Q176 antifungal protein C (PAFC), which is phylogenetically distinct to the other two Penicillium antifungal proteins, PAF and PAFB, that are expressed by this biotechnologically important ascomycete. PAFC is secreted into the culture broth and is co-expressed with PAF and PAFB in the exudates of surface cultures. This observation is in line with the suggested role of AMPs in the adaptive response of the host to endogenous and/or environmental stimuli. The in silico structural model predicted five β-strands stabilized by four intramolecular disulfide bonds in PAFC. The functional characterization of recombinant PAFC provided evidence for a promising new molecule in anti-Candida therapy. The thermotolerant PAFC killed planktonic cells and reduced the metabolic activity of sessile cells in pre-established biofilms of two Candidaalbicans strains, one of which was a fluconazole-resistant clinical isolate showing higher PAFC sensitivity than the fluconazole-sensitive strain. Candidacidal activity was linked to severe cell morphology changes, PAFC internalization, induction of intracellular reactive oxygen species and plasma membrane disintegration. The lack of hemolytic activity further corroborates the potential applicability of PAFC in clinical therapy.
Collapse
Affiliation(s)
- Jeanett Holzknecht
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria; (J.H.); (A.K.)
| | - Alexander Kühbacher
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria; (J.H.); (A.K.)
| | - Csaba Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary;
| | - Attila Farkas
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (G.V.); (G.K.T.)
| | - Jose F. Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, E-46980 Valencia, Spain; (J.F.M.); (P.M.)
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, E-46980 Valencia, Spain; (J.F.M.); (P.M.)
| | - Gábor K. Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (G.V.); (G.K.T.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, H-6726 Szeged, Hungary
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Correspondence: (L.G.); (F.M.); Tel.: +36-62-599-600 (ext. 415) (L.G.); +43-512-9003 (ext. 70207) (F.M.)
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innrain 80–82, A-6020 Innsbruck, Austria; (J.H.); (A.K.)
- Correspondence: (L.G.); (F.M.); Tel.: +36-62-599-600 (ext. 415) (L.G.); +43-512-9003 (ext. 70207) (F.M.)
| |
Collapse
|
18
|
Wang Z, Yang Q, Wang X, Li R, Qiao H, Ma P, Sun Q, Zhang H. Antibacterial activity of xanthan-oligosaccharide against Staphylococcus aureus via targeting biofilm and cell membrane. Int J Biol Macromol 2020; 153:539-544. [DOI: 10.1016/j.ijbiomac.2020.03.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/25/2022]
|
19
|
Wang Z, Zhu J, Li W, Li R, Wang X, Qiao H, Sun Q, Zhang H. Antibacterial mechanism of the polysaccharide produced by Chaetomium globosum CGMCC 6882 against Staphylococcus aureus. Int J Biol Macromol 2020; 159:231-235. [PMID: 32387362 DOI: 10.1016/j.ijbiomac.2020.04.269] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 01/16/2023]
Abstract
GCP, a polysaccharide produced by endophytic fungus Chaetomium globosum CGMCC 6882, was found to be antibacterial against Staphylococcus aureus via disrupting cell permeability. However, the antibacterial mechanism of GCP has not been studied before. In present work, results showed that GCP could retard the growth of S. aureus by inducing the depolarization of cell membrane, decreasing the activity of Ca2+-Mg2+-ATPase on cell membrane, and increasing the accumulation of calcium ions in cytoplasm. Moreover, we found that GCP could also inhibit the synthesis of whole cell proteins of S. aureus. Overall, this study proved that the antibacterial mechanism of GCP could be diversified and more studies are needed in the investigation of the antibacterial mechanisms of various polysaccharides.
Collapse
Affiliation(s)
- Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jinfan Zhu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wentao Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueqin Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hanzhen Qiao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|