1
|
Bannink S, Bila KO, van Weperen J, Ligthart NAM, Ferraz MJ, Boot RG, van der Vliet D, Boer DEC, Overkleeft HS, Artola M, Aerts JMFG. 6-O-Alkyl 4-methylumbelliferyl-β-D-glucosides as selective substrates for GBA1 in the discovery of glycosylated sterols. J Lipid Res 2024:100670. [PMID: 39395789 DOI: 10.1016/j.jlr.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Gaucher disease (GD) is a lysosomal storage disorder (LSD) resulting from inherited glucocerebrosidase (GBA1) deficiency. GD diagnosis relies on GBA1 activity assays, typically employing 4-methylumbelliferyl-β-D-glucopyranoside (4MU-β-Glc) as fluorogenic substrate. However, these assays suffer from background 4MU release by the non-lysosomal GBA2 and cytosolic GBA3 enzymes. Here we developed GBA1-selective fluorogenic substrates by synthesizing a series of 6-O-acyl-4MU-β-Glc substrates with diverse fatty acid tails. Because of chemical and enzymatic instability of the ester bonds, analogues of 6-O-palmitoyl-4MU-β-Glc (3) with different chemical linkages were synthesized. 6-O-alkyl-4MU-β-Glc 9, featuring an ether linkage, emerged as the most optimal GBA1 substrate, exhibiting both a low Km and compared to substrate 3 a high Vmax. Importantly, substrate 9 is not hydrolyzed by GBA2 and GBA3, and therefore acts as superior substrate for GD diagnosis. Plants contain glycosyl phytosterols (campesterol, β-sitosterol and sigmasterol) that may also be acylated at C-6. LC-MS/MS analysis revealed that 6-O-acylated and regular glycosylcholesterol (HexChol) tend to be increased in GD patient spleens. Moreover, significant increases in 6-O-acyl-glycosyl-phytosterols were detected in GD spleens. Our findings suggest uptake of (6-O-acyl)-glycosyl-phytosterols from plant food and subsequent lysosomal processing by GBA1, and comprise the first example of accumulation of an exogenous class of glycolipids in GD. Excessive exposure of rodents to glycosylated phytosterols has been reported to induce manifestations of Parkinson's disease (PD). Further investigation is warranted to determine whether (6-O-acyl)-glycosyl-phytosterols could contribute to the enigmatic link between inherited defects in GBA1 and the risk for PD.
Collapse
Affiliation(s)
- Stef Bannink
- Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, 2300 RA Leiden, The Netherlands
| | - Kateryna O Bila
- Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, 2300 RA Leiden, The Netherlands
| | - Joosje van Weperen
- Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, 2300 RA Leiden, The Netherlands
| | - Nina A M Ligthart
- Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, 2300 RA Leiden, The Netherlands
| | - Maria J Ferraz
- Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, 2300 RA Leiden, The Netherlands
| | - Rolf G Boot
- Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, 2300 RA Leiden, The Netherlands
| | - Daan van der Vliet
- Molecular Physiology, Leiden Institute of Chemistry (LIC), Leiden University, 2300 RA Leiden, The Netherlands
| | - Daphne E C Boer
- Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, 2300 RA Leiden, The Netherlands
| | - Herman S Overkleeft
- Bio-organic Synthesis, Leiden Institute of Chemistry (LIC), Leiden University, 2300 RA Leiden, The Netherlands
| | - Marta Artola
- Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, 2300 RA Leiden, The Netherlands.
| | - Johannes M F G Aerts
- Medical Biochemistry, Leiden Institute of Chemistry (LIC), Leiden University, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
2
|
Yue C, Lu W, Fan S, Huang Z, Yang J, Dong H, Zhang X, Shang Y, Lai W, Li D, Dong T, Yuan A, Wu J, Kang L, Hu Y. Nanoparticles for inducing Gaucher disease-like damage in cancer cells. NATURE NANOTECHNOLOGY 2024; 19:1203-1215. [PMID: 38740934 DOI: 10.1038/s41565-024-01668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Nutrient avidity is one of the most distinctive features of tumours. However, nutrient deprivation has yielded limited clinical benefits. In Gaucher disease, an inherited metabolic disorder, cells produce cholesteryl-glucoside which accumulates in lysosomes and causes cell damage. Here we develop a nanoparticle (AbCholB) to emulate natural-lipoprotein-carried cholesterol and initiate Gaucher disease-like damage in cancer cells. AbCholB is composed of a phenylboronic-acid-modified cholesterol (CholB) and albumin. Cancer cells uptake the nanoparticles into lysosomes, where CholB reacts with glucose and generates a cholesteryl-glucoside-like structure that resists degradation and aggregates into microscale crystals, causing Gaucher disease-like damage in a glucose-dependent manner. In addition, the nutrient-sensing function of mTOR is suppressed. It is observed that normal cells escape severe damage due to their inferior ability to compete for nutrients compared with cancer cells. This work provides a bioinspired strategy to selectively impede the metabolic action of cancer cells by taking advantage of their nutrient avidity.
Collapse
Affiliation(s)
- Chunyan Yue
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Wenjing Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Shuxin Fan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Zhusheng Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Jiaying Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Xiaojun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Yuxin Shang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Wenjia Lai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, China
| | - Dandan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Tiejun Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China.
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Yang D, Ding H, Zhang XL, Zhang H, Zhang Y, Liu XW. Esterification and Etherification of Aliphatic Alcohols Enabled by Catalytic Strain-Release of Donor-Acceptor Cyclopropane. Org Lett 2024; 26:4986-4991. [PMID: 38842488 DOI: 10.1021/acs.orglett.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
We herein disclose a highly efficient protocol for the esterification and etherification of alcohols, leveraging a Sc(OTf)3-catalyzed ring-strain release event in the meticulously designed, chromatographically stable mixed anhydrides or benzyl esters that incorporate an intramolecular donor-acceptor cyclopropane (DAC). This versatile method facilitates the straightforward functionalization of sugar, terpene, and steroid alcohols under mild acidic conditions, as showcased by the single-catalyst-driven, dual protection of sugar diol.
Collapse
Affiliation(s)
- Dan Yang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Han Ding
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Huajun Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yuhan Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
4
|
Heins-Marroquin U, Singh RR, Perathoner S, Gavotto F, Merino Ruiz C, Patraskaki M, Gomez-Giro G, Kleine Borgmann F, Meyer M, Carpentier A, Warmoes MO, Jäger C, Mittelbronn M, Schwamborn JC, Cordero-Maldonado ML, Crawford AD, Schymanski EL, Linster CL. CLN3 deficiency leads to neurological and metabolic perturbations during early development. Life Sci Alliance 2024; 7:e202302057. [PMID: 38195117 PMCID: PMC10776888 DOI: 10.26508/lsa.202302057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (or Batten disease) is an autosomal recessive, rare neurodegenerative disorder that affects mainly children above the age of 5 yr and is most commonly caused by mutations in the highly conserved CLN3 gene. Here, we generated cln3 morphants and stable mutant lines in zebrafish. Although neither morphant nor mutant cln3 larvae showed any obvious developmental or morphological defects, behavioral phenotyping of the mutant larvae revealed hyposensitivity to abrupt light changes and hypersensitivity to pro-convulsive drugs. Importantly, in-depth metabolomics and lipidomics analyses revealed significant accumulation of several glycerophosphodiesters (GPDs) and cholesteryl esters, and a global decrease in bis(monoacylglycero)phosphate species, two of which (GPDs and bis(monoacylglycero)phosphates) were previously proposed as potential biomarkers for CLN3 disease based on independent studies in other organisms. We could also demonstrate GPD accumulation in human-induced pluripotent stem cell-derived cerebral organoids carrying a pathogenic variant for CLN3 Our models revealed that GPDs accumulate at very early stages of life in the absence of functional CLN3 and highlight glycerophosphoinositol and BMP as promising biomarker candidates for pre-symptomatic CLN3 disease.
Collapse
Affiliation(s)
- Ursula Heins-Marroquin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Randolph R Singh
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- https://ror.org/00hj8s172 Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Simon Perathoner
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Floriane Gavotto
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Carla Merino Ruiz
- Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
- Biosfer Teslab SL, Reus, Spain
| | - Myrto Patraskaki
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Gemma Gomez-Giro
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Felix Kleine Borgmann
- National Center of Pathology (NCP), Laboratoire national de santé (LNS), Dudelange, Luxembourg
- Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Melanie Meyer
- National Center of Pathology (NCP), Laboratoire national de santé (LNS), Dudelange, Luxembourg
| | - Anaïs Carpentier
- National Center of Pathology (NCP), Laboratoire national de santé (LNS), Dudelange, Luxembourg
| | - Marc O Warmoes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Christian Jäger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Michel Mittelbronn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- National Center of Pathology (NCP), Laboratoire national de santé (LNS), Dudelange, Luxembourg
- Department of Oncology (DONC), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), Dudelange, Luxembourg
- Faculty of Science, Technology and Medicine (FSTM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Science and Medicine (DLSM), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | | | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences (NMBU), Ås, Norway
- Institute for Orphan Drug Discovery, Bremerhaven, Germany
| | - Emma L Schymanski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
5
|
Cherian A, Vadivel V, Thiruganasambandham S, Madhavankutty S. Phytocompounds and their molecular targets in immunomodulation: a review. J Basic Clin Physiol Pharmacol 2023; 34:577-590. [PMID: 34786892 DOI: 10.1515/jbcpp-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/24/2021] [Indexed: 11/15/2022]
Abstract
Immune cells are important for the healthy function of every organ. The homeostasis of the immune system is selfregulated by T-cells, B-cells, and natural killer cells. The immunomodulation process of immune cells is part of the immunotherapy. According to therapeutic methods of immune responses are categorized as inducing (immunostimulant), amplification (immune booster), attenuation (immunomodulation), and prevention (immunosuppressive) actions. The prevalence of chronic immunological diseases like viral infections, allergies, and cancer is mainly due to the over-activation of the immune system. Further, immunomodulators are reported to manage the severity of chronic immunological disorders. Moreover, these immunomodulator-acting proteins are identified as potential molecular targets for the regulation of the immune system. Moreover, natural compound like phytocompounds are known to bind these targets and modulates the immune system. The specialized phytocompounds like curcumin, quercetin, stilbenes, flavonoids, and lignans are shown the immunomodulatory actions and ameliorate the immunological disorders. The present scenario of a COVID-19 pandemic situation has taught us the need to focus on strengthening the immune system and the development of the most promising immunotherapeutics. This review is focused on an overview of various phytocompounds and their molecular targets for the management of immunological disorders via immunosuppressants and immunostimulants actions.
Collapse
Affiliation(s)
- Ayda Cherian
- Pharmaceutical Chemistry, SRM College of Pharmacy, Kattankulathur, Tamil Nadu, India
| | - Velmurugan Vadivel
- Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur, Chengalpattu District, Tamil Nadu, India
| | | | | |
Collapse
|
6
|
Pereira de Sa N, Del Poeta M. Sterylglucosides in Fungi. J Fungi (Basel) 2022; 8:1130. [PMID: 36354897 PMCID: PMC9698648 DOI: 10.3390/jof8111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sterylglucosides (SGs) are sterol conjugates widely distributed in nature. Although their universal presence in all living organisms suggests the importance of this kind of glycolipids, they are yet poorly understood. The glycosylation of sterols confers a more hydrophilic character, modifying biophysical properties of cell membranes and altering immunogenicity of the cells. In fungi, SGs regulate different cell pathways to help overcome oxygen and pH challenges, as well as help to accomplish cell recycling and other membrane functions. At the same time, the level of these lipids is highly controlled, especially in wild-type fungi. In addition, modulating SGs metabolism is becoming a novel tool for vaccine and antifungal development. In the present review, we bring together multiple observations to emphasize the underestimated importance of SGs for fungal cell functions.
Collapse
Affiliation(s)
- Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- Institute of Chemical Biology and Drug Discovery (ICB&DD), Stony Brook, NY 11794, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
7
|
Grob G, Hemmerle M, Yakobov N, Mahmoudi N, Fischer F, Senger B, Becker HD. tRNA-dependent addition of amino acids to cell wall and membrane components. Biochimie 2022; 203:93-105. [DOI: 10.1016/j.biochi.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
8
|
Ishibashi Y. Functions and applications of glycolipid-hydrolyzing microbial glycosidases. Biosci Biotechnol Biochem 2022; 86:974-984. [PMID: 35675217 DOI: 10.1093/bbb/zbac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/29/2022] [Indexed: 11/13/2022]
Abstract
Glycolipids are important components of cell membranes in several organisms. The major glycolipids in mammals are glycosphingolipids (GSLs), which are composed of ceramides. In mammals, GSLs are degraded stepwise from the non-reducing end of the oligosaccharides via exo-type glycosidases. However, endoglycoceramidase (EGCase), an endo-type glycosidase found in actinomycetes, is a unique enzyme that directly acts on the glycosidic linkage between oligosaccharides and ceramides to generate intact oligosaccharides and ceramides. Three molecular species of EGCase, namely EGCase I, EGCase II, and endogalactosylceramidase, have been identified based on their substrate specificity. EGCrP1 and EGCrP2, which are homologs of EGCase in pathogenic fungi, were identified as the first fungal glucosylceramide- and sterylglucoside-hydrolyzing glycosidases, respectively. These enzymes are promising targets for antifungal drugs against pathogenic fungi. This review describes the functions and properties of these microbial glycolipid-degrading enzymes, the molecular basis of their differential substrate specificity, and their applications.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
9
|
Yakobov N, Mahmoudi N, Grob G, Yokokawa D, Saga Y, Kushiro T, Worrell D, Roy H, Schaller H, Senger B, Huck L, Riera Gascon G, Becker HD, Fischer F. RNA-dependent synthesis of ergosteryl-3β-O-glycine in Ascomycota expands the diversity of steryl-amino acids. J Biol Chem 2022; 298:101657. [PMID: 35131263 PMCID: PMC8913301 DOI: 10.1016/j.jbc.2022.101657] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
|
10
|
Comparative lipid profiling of murine and human atherosclerotic plaques using high-resolution MALDI MSI. Pflugers Arch 2021; 474:231-242. [PMID: 34797426 PMCID: PMC8766400 DOI: 10.1007/s00424-021-02643-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022]
Abstract
The distribution of atherosclerotic lesions in the aorta and its branches of ApoE knockout (ApoE−/−) mice is like that of patients with atherosclerosis. By using high-resolution MALDI mass spectrometry imaging (MSI), we aimed at characterizing universally applicable physiological biomarkers by comparing the murine lipid marker profile with that of human atherosclerotic arteries. Therefore, the aorta or carotid artery of male ApoE−/− mice at different ages, human arteries with documented atherosclerotic changes originated from amputated limbs, and corresponding controls were analysed. Obtained data were subjected to multivariate statistical analysis to identify potential biomarkers. Thirty-one m/z values corresponding to individual lipid species of cholesterol esters, lysophosphatidylcholines, lysophosphatidylethanolamines, and cholesterol derivatives were found to be specific in aortic atherosclerotic plaques of old ApoE−/− mice. The lipid composition at related vessel positions of young ApoE−/− mice was more comparable with wild-type mice. Twenty-six m/z values of the murine lipid markers were found in human atherosclerotic peripheral arteries but also control vessels and showed a more patient-dependent diverse distribution. Extensive data analysis without marker preselection based on mouse data revealed lysophosphatidylcholine and glucosylated cholesterol species, the latter not being detected in the murine atherosclerotic tissue, as specific potential novel human atherosclerotic vessel markers. Despite the heterogeneous lipid profile of atherosclerotic peripheral arteries derived from human patients, we identified lipids specifically colocalized to atherosclerotic human tissue and plaques in ApoE−/− mice. These data highlight species-dependent differences in lipid profiles between peripheral artery disease and aortic atherosclerosis.
Collapse
|
11
|
Endo I, Watanabe T, Miyamoto T, Monjusho-Goda H, Ohara J, Hayashi M, Hama Y, Ishibashi Y, Okino N, Ito M. C4-monomethylsterol β-glucoside and its synthase in Aurantiochytrium limacinum mh0186. Glycobiology 2021; 31:1350-1363. [PMID: 34224567 DOI: 10.1093/glycob/cwab070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/14/2022] Open
Abstract
Thraustochytrids, unicellular marine protists, synthesize polyunsaturated fatty acids (PUFAs) and PUFA-containing phospholipids; however, little is known about their glycolipids and their associated metabolism. Here, we report two glycolipids (GL-A, B) and their synthases in Aurantiochytrium limacinum mh0186. Two glycolipids were purified from A. limacinum mh0186, and they were determined by gas chromatography, mass spectrometry and two-dimensional nuclear magnetic resonance to be 3-O-β-D-glucopyranosyl-stigmasta-5,7,22-triene (GL-A) and 3-O-β-D-glucopyranosyl-4α-methyl-stigmasta-7,22-diene (GL-B), both of which are sterol β-glucosides (β-SGs); the structure of GL-B has not been reported thus far. Seven candidate genes responsible for the synthesis of these β-SGs were extracted from the draft genome database of A. limacinum using the yeast sterol β-glucosyltransferase (SGT; EC 2.4.1.173) sequence as a query. Expression analysis using Saccharomyces cerevisiae revealed that two gene products (AlSGT-1 and 2) catalyze the transfer of glucose from UDP-glucose to sterols, generating sterylglucosides (SGs). Compared to AlSGT-1, AlSGT-2 exhibited wide specificity for sterols and used C4-monomethylsterol to synthesize GL-B. The disruption of alsgt-2 but not alsgt-1 in strain mh0186 resulted in a decrease in total SG and almost complete loss of GL-B, indicating that AlSGT-2 is responsible for the synthesis of β-SGs in A. limacinum mh0186, especially GL-B, which possesses a unique sterol structure.
Collapse
Affiliation(s)
- Ikumi Endo
- Department of Bioscience and Biotechnology
| | | | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | - Masahiro Hayashi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoichiro Hama
- Applied Biochemistry and Food Science Course, Faculty of Agriculture, Saga University, 1 Honjo, Saga 840-8502, Japan
| | | | | | - Makoto Ito
- Department of Bioscience and Biotechnology.,Innovative Bio-Architecture Center, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395
| |
Collapse
|