1
|
Chartier CA, Woods VA, Xu Y, van Vlimmeren AE, Johns AC, Jovanovic M, McDermott AE, Keedy DA, Shah NH. Allosteric regulation of the tyrosine phosphatase PTP1B by a protein-protein interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603632. [PMID: 39071364 PMCID: PMC11275736 DOI: 10.1101/2024.07.16.603632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized. Alternatively, protein-protein interactions can allosterically regulate function, enhancing or suppressing activity in response to binding. In this work, we investigate the interaction between the tyrosine phosphatase PTP1B and the adaptor protein Grb2, which have been annotated as binding partners in a number of proteomics studies. This interaction has been postulated to co-localize PTP1B with its substrate IRS-1 by forming a ternary complex, thereby enhancing the dephosphorylation of IRS-1 to suppress insulin signaling. Here, we report that Grb2 binding to PTP1B also allosterically enhances PTP1B catalytic activity. We show that this interaction is dependent on the proline-rich region of PTP1B, which interacts with the C-terminal SH3 domain of Grb2. Using NMR spectroscopy and hydrogen-deuterium exchange mass spectrometry (HDX-MS) we show that Grb2 binding alters PTP1B structure and/or dynamics. Finally, we use MS proteomics to identify other interactors of the PTP1B proline-rich region that may also regulate PTP1B function similarly to Grb2. This work presents one of the first examples of a protein allosterically regulating the enzymatic activity of PTP1B and lays the foundation for discovering new mechanisms of PTP1B regulation in cell signaling.
Collapse
Affiliation(s)
| | - Virgil A. Woods
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- PhD Program in Biochemistry, CUNY Graduate Center, New York, NY 10016
| | - Yunyao Xu
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Anne E. van Vlimmeren
- Department of Chemistry, Columbia University, New York, NY 10027
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Andrew C. Johns
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Ann E. McDermott
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Daniel A. Keedy
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031
- Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031
- PhD Programs in Biochemistry, Biology, & Chemistry, CUNY Graduate Center, New York, NY 10016
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, NY 10027
| |
Collapse
|
2
|
Malagrinò F, Puglisi E, Pagano L, Travaglini-Allocatelli C, Toto A. GRB2: A dynamic adaptor protein orchestrating cellular signaling in health and disease. Biochem Biophys Rep 2024; 39:101803. [PMID: 39175664 PMCID: PMC11340617 DOI: 10.1016/j.bbrep.2024.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024] Open
Abstract
GRB2, or Growth Factor Receptor-Bound Protein 2, is a pivotal adaptor protein in intracellular signal transduction pathways, particularly within receptor tyrosine kinase (RTK) signaling cascades. Its crystal structure reveals a modular architecture comprising a single Src homology 2 (SH2) domain flanked by two Src homology 3 (SH3) domains, facilitating dynamic interactions critical for cellular signaling. While SH2 domains recognize phosphorylated tyrosines, SH3 domains bind proline-rich sequences, enabling GRB2 to engage with various downstream effectors. Folding and binding studies of GRB2 in its full-length form and isolated domains highlight a complex interplay between its protein-protein interaction domains on the folding energy landscape and in driving its function. Being at the crosslink of many key molecular pathways in the cell, GRB2 possesses a role in cancer pathogenesis, particularly in mediating the Ras-mitogen activated protein kinase (MAPK) pathway. Thus, pharmacological targeting of GRB2 domains is a promising field in cancer therapy, with efforts focused on disrupting protein-protein interactions. However, the dynamic interplay driving GRB2 function suggests the presence of allosteric sites at the interface between domains that could be targeted to modulate the binding properties of its constituent domains. We propose that the analysis of GRB2 proteins from other species may provide additional insights to make the allosteric pharmacological targeting of GRB2 a more feasible strategy.
Collapse
Affiliation(s)
- Francesca Malagrinò
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze Della Vita e Dell'ambiente, Universita' Dell’Aquila, Piazzale Salvatore Tommasi 1, L'Aquila, Coppito, 67010, Italy
| | - Elena Puglisi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Carlo Travaglini-Allocatelli
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Universita di Roma, P.le Aldo Moro 5, 00185, Rome, Italy – Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Italy
| |
Collapse
|
3
|
Tang AAS, Macdonald A, McPherson MJ, Tomlinson DC. Targeting Grb2 SH3 Domains with Affimer Proteins Provides Novel Insights into Ras Signalling Modulation. Biomolecules 2024; 14:1040. [PMID: 39199427 PMCID: PMC11352564 DOI: 10.3390/biom14081040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Src homology 3 (SH3) domains play a critical role in mediating protein-protein interactions (PPIs) involved in cell proliferation, migration, and the cytoskeleton. Despite their abundance in the human proteome, the functions and molecular interactions of many SH3 domains remain unknown, and this is in part due to the lack of SH3-domain-specific reagents available for their study. Affimer proteins have been developed as affinity reagents targeting a diverse range of targets, including those involved in PPIs. In this study, Affimer proteins were isolated against both the N- and C-terminal SH3 domains (NSH3 and CSH3) of growth-factor-receptor-bound protein 2 (Grb2), an adapter protein that provides a critical link between cell surface receptors and Ras signalling pathways. Targeting the CSH3 alone for the inhibition of PPIs appeared sufficient for curtailing Ras signalling in mammalian cell lines stimulated with human epidermal growth factor (EGF), which conflicts with the notion that the predominant interactions with Ras activating Son of sevenless (SOS) occur via the NSH3 domain. This result supports a model in which allosteric mechanisms involved in Grb2-SOS1 interaction modulate Ras activation.
Collapse
Affiliation(s)
- Anna A. S. Tang
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (A.A.S.T.); (A.M.)
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (A.A.S.T.); (A.M.)
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Michael J. McPherson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (A.A.S.T.); (A.M.)
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Darren C. Tomlinson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (A.A.S.T.); (A.M.)
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Di Felice M, Pagano L, Pennacchietti V, Diop A, Pietrangeli P, Marcocci L, Di Matteo S, Malagrinò F, Toto A, Gianni S. The binding selectivity of the C-terminal SH3 domain of Grb2, but not its folding pathway, is dictated by its contiguous SH2 domain. J Biol Chem 2024; 300:107129. [PMID: 38432639 PMCID: PMC10979101 DOI: 10.1016/j.jbc.2024.107129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024] Open
Abstract
The adaptor protein Grb2, or growth factor receptor-bound protein 2, possesses a pivotal role in the transmission of fundamental molecular signals in the cell. Despite lacking enzymatic activity, Grb2 functions as a dynamic assembly platform, orchestrating intracellular signals through its modular structure. This study delves into the energetic communication of Grb2 domains, focusing on the folding and binding properties of the C-SH3 domain linked to its neighboring SH2 domain. Surprisingly, while the folding and stability of C-SH3 remain robust and unaffected by SH2 presence, significant differences emerge in the binding properties when considered within the tandem context compared with isolated C-SH3. Through a double mutant cycle analysis, we highlighted a subset of residues, located at the interface with the SH2 domain and far from the binding site, finely regulating the binding of a peptide mimicking a physiological ligand of the C-SH3 domain. Our results have mechanistic implications about the mechanisms of specificity of the C-SH3 domain, indicating that the presence of the SH2 domain optimizes binding to its physiological target, and emphasizing the general importance of considering supramodular multidomain protein structures to understand the functional intricacies of protein-protein interaction domains.
Collapse
Affiliation(s)
- Mariana Di Felice
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Livia Pagano
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Awa Diop
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Paola Pietrangeli
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Lucia Marcocci
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Sara Di Matteo
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesca Malagrinò
- Dipartimento di Medicina clinica, sanità pubblica, scienze della vita e dell'ambiente, Università dell'Aquila, L'Aquila, Coppito, Italy.
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.
| |
Collapse
|
5
|
Pang X, Cui D, Lv B, Wang CY. Discovery of Potent SOS1 PROTACs with Effective Antitumor Activities against NCI-H358 Tumor Cells In Vitro/In Vivo. J Med Chem 2024; 67:1563-1579. [PMID: 38206836 DOI: 10.1021/acs.jmedchem.3c02135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Directly targeted KRAS inhibitors are now facing resistance problems, which might be partially solved by the combination of SOS1 inhibitors with KRAS inhibitors. However, this combination may still have some resistance mitigation potential. Comparatively, SOS1 PROTAC may have promising applications in addressing the drug resistance problem by degrading the SOS1 protein. Herein, we report the discovery of novel SOS1 PROTACs and their antitumor activity both in vitro and in vivo. In vitro studies demonstrated that degrader 4 had strong inhibitory effects on the proliferation of NCI-H358 cells with IC50 of 5 nM, together with significant degradation of SOS1 protein with DC50 of 13 nM. In the NCI-H358 xenograft model, degrader 4 exhibited significant antitumor activities with TGITV values of 58.8% at 30 mg/kg bid. The PK and safety profiles also supported degrader 4 for further studies as an effective tool compound.
Collapse
Affiliation(s)
- Xudong Pang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Zelgen Pharma-Tech Co., Ltd., Building 3, No. 999, Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Dawei Cui
- Shanghai Zelgen Pharma-Tech Co., Ltd., Building 3, No. 999, Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Binhua Lv
- Shanghai Zelgen Pharma-Tech Co., Ltd., Building 3, No. 999, Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Cheng-Yun Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Kazemein Jasemi NS, Mehrabipour M, Magdalena Estirado E, Brunsveld L, Dvorsky R, Ahmadian MR. Functional Classification and Interaction Selectivity Landscape of the Human SH3 Domain Superfamily. Cells 2024; 13:195. [PMID: 38275820 PMCID: PMC10814857 DOI: 10.3390/cells13020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
SRC homology 3 (SH3) domains are critical interaction modules that orchestrate the assembly of protein complexes involved in diverse biological processes. They facilitate transient protein-protein interactions by selectively interacting with proline-rich motifs (PRMs). A database search revealed 298 SH3 domains in 221 human proteins. Multiple sequence alignment of human SH3 domains is useful for phylogenetic analysis and determination of their selectivity towards PRM-containing peptides (PRPs). However, a more precise functional classification of SH3 domains is achieved by constructing a phylogenetic tree only from PRM-binding residues and using existing SH3 domain-PRP structures and biochemical data to determine the specificity within each of the 10 families for particular PRPs. In addition, the C-terminal proline-rich domain of the RAS activator SOS1 covers 13 of the 14 recognized proline-rich consensus sequence motifs, encompassing differential PRP pattern selectivity among all SH3 families. To evaluate the binding capabilities and affinities, we conducted fluorescence dot blot and polarization experiments using 25 representative SH3 domains and various PRPs derived from SOS1. Our analysis has identified 45 interacting pairs, with binding affinities ranging from 0.2 to 125 micromolar, out of 300 tested and potential new SH3 domain-SOS1 interactions. Furthermore, it establishes a framework to bridge the gap between SH3 and PRP interactions and provides predictive insights into the potential interactions of SH3 domains with PRMs based on sequence specifications. This novel framework has the potential to enhance the understanding of protein networks mediated by SH3 domain-PRM interactions and be utilized as a general approach for other domain-peptide interactions.
Collapse
Affiliation(s)
- Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.S.K.J.); (M.M.); (R.D.)
| | - Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.S.K.J.); (M.M.); (R.D.)
| | - Eva Magdalena Estirado
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands; (E.M.E.); (L.B.)
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands; (E.M.E.); (L.B.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.S.K.J.); (M.M.); (R.D.)
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (N.S.K.J.); (M.M.); (R.D.)
| |
Collapse
|
7
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
8
|
Harwood SJ, Smith CR, Lawson JD, Ketcham JM. Selected Approaches to Disrupting Protein-Protein Interactions within the MAPK/RAS Pathway. Int J Mol Sci 2023; 24:ijms24087373. [PMID: 37108538 PMCID: PMC10139024 DOI: 10.3390/ijms24087373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Within the MAPK/RAS pathway, there exists a plethora of protein-protein interactions (PPIs). For many years, scientists have focused efforts on drugging KRAS and its effectors in hopes to provide much needed therapies for patients with KRAS-mutant driven cancers. In this review, we focus on recent strategies to inhibit RAS-signaling via disrupting PPIs associated with SOS1, RAF, PDEδ, Grb2, and RAS.
Collapse
Affiliation(s)
| | | | - J David Lawson
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| | - John M Ketcham
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| |
Collapse
|
9
|
Exploring the effect of tethered domains on the folding of Grb2 protein. Arch Biochem Biophys 2022; 731:109444. [DOI: 10.1016/j.abb.2022.109444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
|
10
|
Seiler C, Stainthorp AK, Ketchen S, Jones CM, Marks K, Quirke P, Ladbury JE. The Grb2 splice variant, Grb3-3, is a negative regulator of RAS activation. Commun Biol 2022; 5:1029. [PMID: 36171279 PMCID: PMC9519967 DOI: 10.1038/s42003-022-03985-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Activation of RAS is crucial in driving cellular outcomes including proliferation, differentiation, migration and apoptosis via the MAPK pathway. This is initiated on recruitment of Grb2, as part of a Grb2-Sos complex, to an up-regulated receptor tyrosine kinase (RTK), enabling subsequent interaction of Sos with the plasma membrane-localised RAS. Aberrant regulation at this convergence point for RTKs in MAPK signalling is a key driver of multiple cancers. Splicing of the GRB2 gene produces a deletion variant, Grb3-3, that is incapable of binding to RTKs. We show that, despite maintaining the ability to bind to Sos, the Grb3-3-Sos complex remains in the cytoplasm, unable to engage with RAS. Competition between Grb2 and Grb3-3 for binding to C-terminal proline-rich sequences on Sos modulates MAPK signalling. Additionally, we demonstrate that splicing is regulated by heterogenous nuclear riboproteins C1/C2, and that normal and malignant colon tissue show differential Grb3-3 expression.
Collapse
Affiliation(s)
- Caroline Seiler
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Amy K Stainthorp
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Sophie Ketchen
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Christopher M Jones
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
- Radiotherapy Research Group, Faculty of Medicine & Health, University of Leeds, Leeds, UK
- Leeds Cancer Centre, The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Kate Marks
- University of Leeds School of Medicine, Leeds Institute of Medical Research, Pathology and Data Analytics, University of Leeds, Leeds, UK
| | - Philip Quirke
- University of Leeds School of Medicine, Leeds Institute of Medical Research, Pathology and Data Analytics, University of Leeds, Leeds, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
11
|
Liu Y, Jang H, Zhang M, Tsai CJ, Maloney R, Nussinov R. The structural basis of BCR-ABL recruitment of GRB2 in chronic myelogenous leukemia. Biophys J 2022; 121:2251-2265. [PMID: 35651316 PMCID: PMC9279350 DOI: 10.1016/j.bpj.2022.05.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/24/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
BCR-ABL drives chronic myeloid leukemia (CML). BCR binding to GRB2 transduces signaling via the Ras/MAPK pathway. Despite considerable data confirming the binding, molecular-level understanding of exactly how the two proteins interact, and, especially, what are the determinants of the specificity of the SH2GRB2 domain-phosphorylated BCR (pBCR) recognition are still open questions. Yet, this is vastly important for understanding binding selectivity, and for predicting the phosphorylated receptors, or peptides, that are likely to bind. Here, we uncover these determinants and ascertain to what extent they relate to the affinity of the interaction. Toward this end, we modeled the complexes of the pBCR and SH2GRB2 and other pY/Y-peptide-SH2 complexes and compared their specificity and affinity. We observed that pBCR's 176FpYVNV180 motif is favorable and specific to SH2GRB2, similar to pEGFR, but not other complexes. SH2GRB2 contains two binding pockets: pY-binding recognition pocket triggers binding, and the specificity pocket whose interaction is governed by N179 in pBCR and W121 in SH2GRB2. Our proposed motif with optimal affinity to SH2GRB2 is E/D-pY-E/V-N-I/L. Collectively, we provide the structural basis of BCR-ABL recruitment of GRB2, outline its specificity hallmarks, and delineate a blueprint for prediction of BCR-binding scaffolds and for therapeutic peptide design.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ryan Maloney
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Dionne U, Percival LJ, Chartier FJM, Landry CR, Bisson N. SRC homology 3 domains: multifaceted binding modules. Trends Biochem Sci 2022; 47:772-784. [PMID: 35562294 DOI: 10.1016/j.tibs.2022.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
The assembly of complexes following the detection of extracellular signals is often controlled by signaling proteins comprising multiple peptide binding modules. The SRC homology (SH)3 family represents the archetypical modular protein interaction module, with ~300 annotated SH3 domains in humans that regulate an impressive array of signaling processes. We review recent findings regarding the allosteric contributions of SH3 domains host protein context, their phosphoregulation, and their roles in phase separation that challenge the simple model in which SH3s are considered to be portable domains binding to specific proline-rich peptide motifs.
Collapse
Affiliation(s)
- Ugo Dionne
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Lily J Percival
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Manchester, UK
| | - François J M Chartier
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Christian R Landry
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Institute of Integrative and Systems Biology, Université Laval, Quebec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec, QC, Canada; Department of Biology, Université Laval, Quebec, QC, Canada.
| | - Nicolas Bisson
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
13
|
He X, Du K, Wang Y, Fan J, Li M, Ni D, Lu S, Bian X, Liu Y. Autopromotion of K-Ras4B Feedback Activation Through an SOS-Mediated Long-Range Allosteric Effect. Front Mol Biosci 2022; 9:860962. [PMID: 35463958 PMCID: PMC9023742 DOI: 10.3389/fmolb.2022.860962] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022] Open
Abstract
The Ras-specific guanine nucleotide exchange factors Son of Sevenless (SOS) regulates Ras activation by converting inactive GDP-bound to active GTP-bound states. The catalytic activity of Ras is further allosterically regulated by GTP-Ras bound to a distal site through a positive feedback loop. To address the mechanism underlying the long-range allosteric activation of the catalytic K-Ras4B by an additional allosteric GTP-Ras through SOS, we employed molecular dynamics simulation of the K-Ras4BG13D•SOScat complex with and without an allosteric GTP-bound K-Ras4BG13D. We found that the binding of an allosteric GTP-K-Ras4BG13D enhanced the affinity between the catalytic K-Ras4BG13D and SOScat, forming a more stable conformational state. The peeling away of the switch I from the nucleotide binding site facilitated the dissociation of GDP, thereby contributing to the increased nucleotide exchange rate. The community networks further showed stronger edge connection upon allosteric GTP-K-Ras4BG13D binding, which represented an increased interaction between catalytic K-Ras4BG13D and SOScat. Moreover, GTP-K-Ras4BG13D binding transmitted allosteric signaling pathways though the Cdc25 domain of SOS that enhanced the allosteric regulatory from the K-Ras4BG13D allosteric site to the catalytic site. This study may provide an in-depth mechanism for abnormal activation and allosteric regulation of K-Ras4BG13D.
Collapse
Affiliation(s)
- Xuan He
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Kui Du
- School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, China
| | - Yuanhao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jigang Fan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyu Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Duan Ni
- The Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaolan Bian
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Nussinov R, Tsai CJ, Jang H. Allostery, and how to define and measure signal transduction. Biophys Chem 2022; 283:106766. [PMID: 35121384 PMCID: PMC8898294 DOI: 10.1016/j.bpc.2022.106766] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Here we ask: What is productive signaling? How to define it, how to measure it, and most of all, what are the parameters that determine it? Further, what determines the strength of signaling from an upstream to a downstream node in a specific cell? These questions have either not been considered or not entirely resolved. The requirements for the signal to propagate downstream to activate (repress) transcription have not been considered either. Yet, the questions are pivotal to clarify, especially in diseases such as cancer where determination of signal propagation can point to cell proliferation and to emerging drug resistance, and to neurodevelopmental disorders, such as RASopathy, autism, attention-deficit/hyperactivity disorder (ADHD), and cerebral palsy. Here we propose a framework for signal transduction from an upstream to a downstream node addressing these questions. Defining cellular processes, experimentally measuring them, and devising powerful computational AI-powered algorithms that exploit the measurements, are essential for quantitative science.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
15
|
Ochi S, Iiyama M, Oda M. Interdomain interactions in Grb2 revealed by the conformational stability and CD28 binding analysis. Biophys Chem 2022; 284:106792. [DOI: 10.1016/j.bpc.2022.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/02/2022]
|
16
|
Kazemein Jasemi NS, Reza Ahmadian M. Allosteric regulation of GRB2 modulates RAS activation. Small GTPases 2022; 13:282-286. [PMID: 35703160 DOI: 10.1080/21541248.2022.2089001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
RAS activation is a multiple-step process in which linkage of the extracellular stimuli to the RAS activator SOS1 is the main step in RAS activation. GRB2 adaptor protein is the main modulator in SOS1 recruitment to the plasma membrane and its activation. This interaction is well studied but the exact mechanism of GRB2-SOS1 complex formation and SOS1 activation has yet remained obscure. Here, a new allosteric mechanism for the GRB2 regulation is described as a prerequisite for the modulation of SOS1 activation. This regulatory mechanism comprises a series of intramolecular interactions which are potentiated by GRB2 interaction with upstream ligands.Abbreviations: GRB2, growth factor receptor-bound protein 2; SOS1, son of sevenless 1; RAS, Rat Sarcoma; GEF, guanine nucleotide exchange factor; GAP, GTPase-activating protein; HER2, human epidermal growth factor receptor; SH3, SRC Homology 3; SH2, SRC Homology 2; PRD, proline-rich domain; PRM, proline-rich motif; PRP, proline-rich peptide; RTK, receptor tyrosine kinases.
Collapse
Affiliation(s)
- Neda S Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitaetsstrasse 1, Building 22.03, 40255 Düsseldorf, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitaetsstrasse 1, Building 22.03, 40255 Düsseldorf, Germany
| |
Collapse
|
17
|
Electrostatic Forces Mediate the Specificity of RHO GTPase-GDI Interactions. Int J Mol Sci 2021; 22:ijms222212493. [PMID: 34830380 PMCID: PMC8622166 DOI: 10.3390/ijms222212493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/13/2023] Open
Abstract
Three decades of research have documented the spatiotemporal dynamics of RHO family GTPase membrane extraction regulated by guanine nucleotide dissociation inhibitors (GDIs), but the interplay of the kinetic mechanism and structural specificity of these interactions is as yet unresolved. To address this, we reconstituted the GDI-controlled spatial segregation of geranylgeranylated RHO protein RAC1 in vitro. Various biochemical and biophysical measurements provided unprecedented mechanistic details for GDI function with respect to RHO protein dynamics. We determined that membrane extraction of RHO GTPases by GDI occurs via a 3-step mechanism: (1) GDI non-specifically associates with the switch regions of the RHO GTPases; (2) an electrostatic switch determines the interaction specificity between the C-terminal polybasic region of RHO GTPases and two distinct negatively-charged clusters of GDI1; (3) a non-specific displacement of geranylgeranyl moiety from the membrane sequesters it into a hydrophobic cleft, effectively shielding it from the aqueous milieu. This study substantially extends the model for the mechanism of GDI-regulated RHO GTPase extraction from the membrane, and could have implications for clinical studies and drug development.
Collapse
|
18
|
Mosaddeghzadeh N, Ahmadian MR. The RHO Family GTPases: Mechanisms of Regulation and Signaling. Cells 2021; 10:1831. [PMID: 34359999 PMCID: PMC8305018 DOI: 10.3390/cells10071831] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Much progress has been made toward deciphering RHO GTPase functions, and many studies have convincingly demonstrated that altered signal transduction through RHO GTPases is a recurring theme in the progression of human malignancies. It seems that 20 canonical RHO GTPases are likely regulated by three GDIs, 85 GEFs, and 66 GAPs, and eventually interact with >70 downstream effectors. A recurring theme is the challenge in understanding the molecular determinants of the specificity of these four classes of interacting proteins that, irrespective of their functions, bind to common sites on the surface of RHO GTPases. Identified and structurally verified hotspots as functional determinants specific to RHO GTPase regulation by GDIs, GEFs, and GAPs as well as signaling through effectors are presented, and challenges and future perspectives are discussed.
Collapse
Affiliation(s)
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Universitätsstrasse 1, Building 22.03.05, 40225 Düsseldorf, Germany;
| |
Collapse
|